

Bertec Device Interface Library
SDK and API Documentation

Version 2.50

August 2022

Bertec Corporation

ii

Copyright © 2008-2022 BERTEC Corporation. All rights reserved. Information in this

document is subject to change without notice. Companies, names, and data used in

examples herein are fictitious unless otherwise noted. No part of this document may be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any

purpose, without express written permission of BERTEC Corporation or its licensees.

"Measurement Excellence", "Dominate Your Field", BERTEC Corporation, and their logos are trademarks of BERTEC

Corporation. Other trademarks are the property of their respective owners.

Printed in the United States of America.

Document Control ID: 80P-0165

Bertec Corporation

iii

SOFTWARE LICENSE AGREEMENT

This License Agreement is between you (“Customer”) and Bertec Corporation, the author of the Bertec Device Library software and governs your use of the of the
dynamic link libraries, example source code, and documentation (all of which are referred to herein as the "Software").

PLEASE READ THIS SOFTWARE LICENSE AGREEMENT CAREFULLY BEFORE DOWNLOADING OR USING THE SOFTWARE. NO REFUNDS ARE

POSSIBLE. BY DOWNLOADING OR INSTALLING THE SOFTWARE, YOU ARE CONSENTING TO BE BOUND BY THIS AGREEMENT. IF YOU DO
NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT DOWNLOAD OR INSTALL THE SOFTWARE.

• Bertec Corporation grants Customer a non-exclusive right to install and use the Software for the express purposes of connecting with Bertec Devices
for data gathering purposes. Other uses are prohibited.

• Customer may make archival copies of the Software provided Customer affixes to such copy all copyright, confidentiality, and proprietary notices that
appear on the original.

• The Customer may not resell the Software or otherwise represent themselves as the owner of said software.

The binary redistributables are royalty free to the original Licensee and can be distributed with applications, provided that proper attribution is made in the
documentation and end user agreement. Binary redistributables include but are not limited to:

1. BertecDevice.dll

2. ftd2xx.dll

Note that the FTD2XX.DLL is a USB driver provided by Future Technology Devices that enables communication with the Bertec Device.

The binary redistributables cannot be used by third parties to build applications or components.

Customer created binary redistributables from the Software source code cannot be used by anyone, including the original license holder, to create a product that
competes with Bertec Corporation products. Neither the original nor altered source code may be distributed.

EXCEPT AS EXPRESSLY AUTHORIZED ABOVE, CUSTOMER SHALL NOT: COPY, IN WHOLE OR IN PART, SOFTWARE OR DOCUMENTATION;

MODIFY THE SOFTWARE; REVERSE COMPILE OR REVERSE ASSEMBLE ALL OR ANY PORTION OF THE SOFTWARE; OR RENT, LEASE,
DISTRIBUTE, SELL, MAKE AVAILABLE FOR DOWNLOAD, OR CREATE DERIVATIVE WORKS OF THE SOFTWARE OR SOURCE CODE.

Customer agrees that aspects of the licensed materials, including the specific design and structure of individual programs, constitute trade secrets and/or copyrighted

material of Bertec Corporation. Customer agrees not to disclose, provide, or otherwise make available such trade secrets or copyrighted material in any form to any
third party without the prior written consent of Bertec Corporation. Customer agrees to implement reasonable security measures to protect such trade secrets and

copyrighted material. Title to Software and documentation shall remain solely with Bertec Corporation.

No Warranty

THE SOFTWARE IS BEING DELIVERED TO YOU "AS IS" AND BERTEC CORPORATION MAKES NO WARRANTY AS TO ITS USE, RELIABILITY

OR PERFORMANCE. BERTEC CORPORATION DOES NOT AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY

USING THE SOFTWARE. BERTEC CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF THIRD
PARTY RIGHTS, TITLE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. YOU ASSUME ALL RISK ASSOCIATED WITH THE

QUALITY, PERFORMANCE, INSTALLATION AND USE OF THE SOFTWARE INCLUDING, BUT NOT LIMITED TO, THE RISKS OF PROGRAM

ERRORS, DAMAGE TO EQUIPMENT, LOSS OF DATA OR SOFTWARE PROGRAMS, OR UNAVAILABILITY OR INTERRUPTION OF OPERATIONS.
YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USE OF THE SOFTWARE AND ASSUME ALL RISKS
ASSOCIATED WITH ITS USE.

Indemnification

You agree to indemnify and hold Bertec Corporation, parents, subsidiaries, affiliates, officers and employees, harmless from any claim or demand, including
reasonable attorneys' fees, made by any third party due to or arising out of your use of the Software, or the infringement by you, of any intellectual property or other
right of any person or entity.

Limitation of Liability

IN NO EVENT WILL BERTEC CORPORATION BE LIABLE TO YOU FOR ANY INDIRECT, INCIDENTAL, SPECIAL, PUNITIVE, CONSEQUENTIAL,
OR OTHER DAMAGES WHATSOEVER, OR ANY LOSS OF REVENUE, DATA, USE, OR PROFITS, EVEN IF BERTEC CORPORATION HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND REGARDLESS OF WHETHER THE CLAIM IS BASED UPON ANY CONTRACT, TORT
OR OTHER LEGAL OR EQUITABLE THEORY.

This License is effective until terminated. Customer may terminate this License at any time by destroying all copies of Software including any documentation. This

License will terminate immediately without notice from Bertec Corporation if Customer fails to comply with any provision of this License. Upon termination,
Customer must destroy all copies of Software.

Software, including technical data, is subject to U.S. export control laws, including the U.S. Export Administration Act and its associated regulations, and may be
subject to export or import regulations in other countries. Customer agrees to comply strictly with all such regulations and acknowledges that it has the responsibility
to obtain licenses to export, re-export, or import Software.

This License shall be governed by and construed in accordance with the laws of the State of Ohio, United States of America, as if performed wholly within the state

and without giving effect to the principles of conflict of law. If any portion hereof is found to be void or unenforceable, the remaining provisions of this License

shall remain in full force and effect. This License constitutes the entire License between the parties with respect to the use of the Software.

Should you have any questions concerning this Agreement, please write to:

Bertec Corporation, 2500 Citygate Drive, Columbus, Ohio 43219

TABLE OF CONTENTS
Introduction __ 8

Definitions, Acronyms, and Abbreviations __ 9

Using the library with your project ___ 10

Gathering data ___ 10

Using data polling __ 12

Using callbacks ___ 12

Data Streaming and Multiple Devices ___ 13

Immediate Data Streams ___ 15

Error checking and handling __ 16

Data processing and format (bertec_DataFrame) ___ 16

Specific Use Cases ___ 17

Single USB Force Plate, No Sync ___ 17

Single Amplifer, No Sync ___ 17

Multiple USB Force Plates, No Sync __ 18

Multiple Amplifers, No Sync __ 19

Internal Clock Resampling, Single Plate ___ 19

External Clock Resampling, Single Plate ___ 20

Multiple Amplifers, Self-Syncing ___ 22

Multiple Amplifers, External Clock ___ 23

Multiple Amplifers, External Clock, EXTERNAL AUX LINE TRIGGERING _________________________________ 24

Bertec Device Library Functions __ 27

bertec_LibraryVersion ___ 27

bertec_Init __ 27

bertec_Close __ 27

bertec_CheckHandle __ 28

bertec_Start ___ 28

bertec_Stop ___ 28

bertec_DataStreamCallback typedef ___ 28

bertec_RegisterDataStreamCallback ___ 28

bertec_UnregisterDataStreamCallback ___ 28

bertec_ImmediateDeviceDataCallback typedef ___ 29

Bertec Corporation

5

bertec_RegisterImmediateDeviceDataCallback __ 29

bertec_UnregisterImmediateDeviceDataCallback __ 29

bertec_StatusCallback typedef ___ 30

bertec_RegisterStatusCallback ___ 30

bertec_UnregisterStatusCallback ___ 30

bertec_DeviceSortCallback typedef ___ 31

bertec_RegisterDeviceSortCallback ___ 31

bertec_UnregisterDeviceSortCallback ___ 31

bertec_GetStatus ___ 31

bertec_StartDataStream __ 32

bertec_StartDataStreamAsync ___ 32

bertec_StartDataStreamNotifcation __ 32

bertec_DataStreamControl::SyncPinMode enum values ___ 33

bertec_DataStreamControl::AuxPinMode enum values __ 35

bertec_DataStreamControl structure __ 36

bertec_StopDataStream __ 37

bertec_GetCurrentDataStreamControl __ 37

bertec_GetBufferedDataAvailable __ 37

bertec_ReadBufferedDataStream __ 37

bertec_AllocateReadBufferedData __ 38

bertec_AllocateReadBufferedDataForCount __ 38

bertec_FreeAllocatedReadBufferedData ___ 38

bertec_ClearBufferedData __ 39

bertec_GetMaxBufferedDataSize ___ 39

bertec_ChangeMaxBufferedDataSize ___ 39

bertec_GetDeviceCount __ 39

bertec_GetDeviceInfo __ 40

bertec_GetDeviceSerialNumber __ 40

bertec_GetDeviceModelNumber ___ 40

bertec_GetDeviceIDString __ 41

bertec_GetDeviceChannels __ 41

bertec_GetDeviceChannelCount ___ 41

bertec_GetDeviceChannelName ___ 42

Bertec Corporation

6

bertec_SetAveraging __ 42

bertec_GetAveraging __ 42

bertec_SetLowpassFiltering __ 42

bertec_GetLowpassFiltering __ 42

bertec_ZeroNow ___ 43

bertec_SetEnableAutozero ___ 43

bertec_GetEnableAutozero ___ 43

bertec_GetAutozeroState __ 43

bertec_AutozeroStates enum values ___ 43

bertec_GetZeroLevelNoiseValue___ 44

bertec_SetUsbThreadPriority ___ 44

bertec_SetSyncPinMode ___ 44

bertec_SyncModeFlags enums values __ 44

bertec_SetAuxPinMode __ 45

bertec_AuxModeFlags enum values __ 45

bertec_SetPinMode ___ 46

bertec_IOPins enum values ___ 46

bertec_PinModes enum values __ 47

bertec_SetSyncAuxPinValues ___ 47

bertec_ResetSyncCounters ___ 48

bertec_ResetDeviceTimestamp ___ 48

bertec_ResetAllDeviceTimestamps __ 48

bertec_ResetDeviceTimestampAtMark ___ 48

bertec_ResetAllDeviceTimestampsAtMark __ 49

bertec_SetExternalClockMode __ 49

bertec_ClockSourceFlags enum values __ 49

bertec_SetAggregateDeviceMode ___ 50

bertec_GetAggregateDeviceMode ___ 50

bertec_AggregateDeviceMode enum values ___ 50

bertec_SetComputedChannelsFlags __ 51

bertec_GetComputedChannelsFlags __ 51

bertec_ComputedChannelFlags enum values __ 51

bertec_SetSubjectHeight ___ 52

bertec_GetSubjectHeight __ 52

bertec_DeviceDataRate __ 52

Bertec Corporation

7

bertec_RedetectConnectedDevices ___ 52

bertec_SetDataRateResampling __ 53

bertec_SetFrequencyGeneration ___ 53

bertec_GetFrequencyGenerationLimits __ 53

bertec_SetUnifiedDataMode __ 54

Bertec_GetUnifiedDataMode __ 54

bertec_SetTimestampAlignmentMode __ 55

bertec_GetTimestampAlignmentMode __ 55

bertec_SetDeviceLogDirectory ___ 55

bertec_GetCurrentDeviceLogFilename __ 55

bertec_DeviceLogCallback typedef__ 56

bertec_RegisterDeviceLogCallback __ 56

bertec_UnregisterDeviceLogCallback __ 56

Error/Status codes (bertec_StatusErrors) __ 57

Troubleshooting __ 59

Document Revision History ___ 60

Bertec Corporation

8

 INTRODUCTION

The Bertec Device Library for Windows provides the end-user developer or data acquisition expert a common and consistent

method to gather data from Bertec equipment. Instead of directly communicating with USB devices and implementing different

protocols and calibrations for each, the Bertec Device Library manages all the needed interactions and provides a stream of

calibrated data to your program or data analysis project to capture for storage or process in real-time. The Library also provides

facilities for zeroing of the plate data (either on-demand for tare loading, or automatic for low or no loading), sample averaging,

low-pass filtering, multiple device support, data synchronization (both external and internal), and synthetic computed data

channels. Automatic detection of device disconnection and reconnection is handled by the Library with little need for your

application to be directly involved. Depending on the hardware available, additional signaling both in and out with external

devices can be controlled. Data is presented to the consumer application by either on-demand polling or by various callback

mechanisms. Both 32 bit and 64 bit Windows operating systems and applications are supported, and both standard “C” and

.NET interfaces are provided.

Sample code is provided in the BertecExample.cpp (C/C++) and BertecExample.cs (C#) files. This document covers the C/C++

interface specifically; a separate document covers the C# interface.

If you have any developmental questions on using this library or example code, please contact Bertec Corporation for support.

Bertec Corporation

9

DEFINITIONS, ACRONYMS, AND ABBREVIATIONS

Balance plate: a Bertec device that measures pressure and movement that is optimized for balance diagnostics.

Force plate: a Bertec device that measures pressure and movement.

Center of Pressure (CoP): The point on the surface of the platform through which the ground reaction force acts. It corresponds

to the projection of the subject’s center of gravity on the platform surface when the subject is motionless. The Center of

Pressure is computed as Moments divided by Force (ex: Mx / Fz).

Frame Rate: The rate at which the hardware device samples and transmits data to over the USB connection. The frame rate is

generally independent between devices and runs at fixed a 1kHz (1000Hz) rate. This is exposed in the Data Frame as the

‘timestamp’ value.

Bertec Corporation

10

USING THE LIBRARY WITH YOUR PROJECT

The Bertec Device Library consists of a DLL file (BertecDevice.DLL) that exposes all of the functionality that should be deployed

along with your application, and a header (bertecif.h) file that will need to be included in whatever manner your development

environment suggests. The DLL comes with a BertecDevice.LIB file that will need to be linked against your application and has

no other dependencies outside of the required Future Technology Devices FTD2XX.DLL file.

For the Library to function properly, the FTDI drivers will need to be installed; in particular, the FTD2XX.DLL library will need to

be accessible somewhere in the path. Depending on your desired deployment method, this can either be part of your

application (residing in the same directory as the BertecDevice.DLL file) or in the system folder. Current FTDI D2XX Device Driver

installations can be downloaded from http://www.ftdichip.com/Drivers/D2XX.htm.

If the FTD2XX.DLL file is not accessible, the bertec_Init function will return a NULL handle value and the Windows API

function GetLastError will return ERROR_FILE_NOT_FOUND.

GATHERING DATA

Reading data from an attached device generally consists of just a few function calls:

1. Call bertec_Init to load the device driver DLL and get a handle to the Library.

2. Call bertec_RegisterDataStreamCallback if your application supports threaded callbacks.

3. Call bertec_Start.

4. Wait for connected devices to become ready by using either bertec_GetStatus or a Status Callback.

5. Set the desired Data Stream mode using bertec_StartDataStream.

6. Poll using bertec_ReadBufferedDataStream, or use the registered threaded callback.

7. Perform any operation your application needs, such as data collection or analysis.

8. Call bertec_Stop.

9. End by calling bertec_Close.

Step 1: bertec_Init.

Calling bertec_Init will set up the internal data in the Library and ready it for use; you must do this before you can use any

other function call in the Bertec Device Library. The bertec_Init function returns a handle that you must store and use later

to pass to the other bertec_XXX functions; you should also check if this handle value is NULL to determine if the FTD2XX.DLL

file was able to be loaded.

Step 2: bertec_RegisterDataStreamCallback.

Depending on how your application works, you will either want to poll for the data yourself (pull) and process it, or else use

the faster callback functionality (push). If your application uses callbacks (the suggested method), you will need to register the

callback with the Library prior to calling bertec_Start.

Step 3: bertec_Start.

To actually detect any connected devices and begin gathering data, you must call bertec_Start with the handle that

bertec_Init returned to you. Doing so will start the device detection process and perform the required steps that each

connected device needs. Data will begin to be read as soon as it becomes available. If your application has setup a data

http://www.ftdichip.com/Drivers/D2XX.htm

Bertec Corporation

11

callback via bertec_RegisterDataStreamCallback, then data will be presented to that function; otherwise your

application need to repeatedly call bertec_ReadBufferedDataStream in order to retrieve any buffered data.

Step 4: Wait for connected devices to become ready.

By using either the bertec_GetStatus function or else a registered bertec_StatusCallback your application can wait

for the Library to report that devices have been detected and are now available. Once the Library reports a status of

BERTEC_DEVICES_READY you can expect to start getting data on either the callback or the polling function.

Step 5: Set the desired Data Stream mode using bertec_StartDataStream.

Multiple Bertec devices can be used in various ways, both solo and combined with other hardware. For example, a 6800

amplifier can be connected to an external data signal to control how the data is delivered, either as a user-controllable clock

or on-off switch. Multiple amplifiers can be bridged together to provided synchronized data.

bertec_StartDataStream provides a supported method for the Library to control this, only starting to deliver data once

various selectable conditions are met. If bertec_StartDataStream is not called, then no data will be presented to the end

point for consumption.

Classical non-synchronized mode can be set up by calling bertec_StartDataStream with an empty

bertec_DataStreamControl, which will result in the data stream effectively using SYNCPINMODE_NONE and

AUXPINMODE_NONE. See the bertec_StartDataStream section for more information.

Step 6: Handle data via a bertec_DataStreamCallback function or else poll using bertec_ReadBufferedDataStream

If your application registered a data callback, it will get called with a block of data each time one becomes available.

Alternatively, if your application has its own method of collecting data it can repeatedly call

bertec_ReadBufferedDataStream to retrieve the currently buffered data one block at a time.

Step 7: Perform operations.

Take the data collected by the Library and perform some functionality with, such as capturing to a data file or presenting the

values in a UI somewhere.

Step 8: bertec_Stop.

Once you have completed your data gathering call bertec_Stop to end all data reading and release all USB connections. Any

connected devices will be reset and will no longer send data. Currently active callbacks will remain active but will no longer

receive data, and bertec_ReadBufferedDataStream will return an empty result. To resume data collection your

application must call bertec_Start again which will start the device detection process over again. Note that you should not

use a Start/Stop cycle as a method to control data coming in; it is much better to simply call bertec_Start and leave the

Library to freely run in the background, using a flag in your data callback to determine if you should ignore or process the

data.

Step 9: bertec_Close.

Once you are completely done with the Library, you will need to call bertec_Close to release any connections that are still

open and free all memory used by the Library, including de-registering all callbacks. Failure to do so may introduce memory or

other resource leaks.

Bertec Corporation

12

USING DATA POLLING

Using data polling instead of callbacks involves repeatedly calling the bertec_ReadBufferedDataStream function until it

returns a value indicating there is no more data left in the internal buffer. A related function

bertec_GetBufferedDataAvailable can be used to pre-determine how much data is currently available in the internal

buffer. Note that there may be more data available than what bertec_GetBufferedDataAvailable reports at the time it

was called; this is due to the Library continually reading the USB device and adding data to the internal buffer as it comes in.

Your application must ensure that reading the buffered data is done frequently in order to avoid any possible data loss; by

default, the internal buffer will contain up to 100 samples before older samples are discarded unless

bertec_ChangeMaxBufferedDataSize is called with a larger buffer size. Be aware that increasing the size of the internal

buffer can dramatically affect the amount of memory that your application will consume, with no gains in terms of

performance.

A very simplistic example of data polling with without any error handling might be similar to the following:

bertec_Handle handle = bertec_Init();

bertec_Start(handle);

while (bertec_GetStatus(handle) != BERTEC_DEVICES_READY)

{

 waitingForDevices();

}

bertec_StartDataStream(handle, NULL);

size_t datasize = 0;

bertec_DataFrame* data=bertec_AllocateReadBufferedData(handle, &datasize);

while (External_Flag_To_Keep_Running_Is_True)

{

 while (bertec_ReadBufferedDataStream(handle,data,datasize) > 0)

 processYourData(data);

}

bertec_FreeAllocatedReadBufferedData handle, data);

bertec_Stop(handle);

bertec_Close(handle);

Once the Library detects devices and performs the needed setup functions, the bertec_GetStatus function will return that

the devices are ready. Your application then starts the desired data stream mode (in this case, classical non-sync), and proceeds

into a data collection loop with an allocated data frame buffer.

Inside the data collection loop the inner-most loop exhaustively reads all of the data available and then does something with it;

once all data has been read the Library will return a zero value which returns code flow back to the outer loop. The outer loop

simply checks to see if the keep-running flag is true, and then repeats the process until it has been set to false.

USING CALLBACKS

Callbacks are the preferred method for reading data from the Library. All callbacks are made using a separate processing thread

outside of your application’s own main thread, which may have implications based on your framework or UI components.

Because of this you may need to design additional signaling and buffering functionality into your application to bridge these two

separate processing spaces. The advantage of using callbacks instead of data polling is that overall the data collection process is

much simpler and there is a significantly lower risk of missing data due to your main application being busy with some other

process. Memory allocation manager that is required for the data polling is also removed. Given good design your application

can also be made much more responsive to changes on the device, resulting in a more fluid experience for the user.

Bertec Corporation

13

To use callbacks, register your callback function along with an optional user data value with

bertec_RegisterDataStreamCallback. Whenever the callback is invoked, your function will receive a pointer to at

bertec_DataFrame structure along with the user data value that you set. Only one callback can be registered at a time; if your

application needs to support more than one callback at a time you will need to implement some sort of list management

system.

A very simplistic example of using callbacks with without any error handling might be similar to the following:

void myDataCallback(bertec_Handle hand, bertec_DataFrame * data, void * user)

{

 processYourData(data);

}

void myStausCallback(bertec_Handle hand, int status, void * user)

{

 if (status == BERTEC_DEVICES_READY)

 { // start the data stream

 bertec_StartDataStream(handle, NULL);

 }

}

bertec_Handle handle = bertec_Init();

bertec_RegisterDataStreamCallback(handle, myDataCallback, NULL);

bertec_RegisterStatusCallback(handle, myStausCallback, NULL);

bertec_Start(handle);

...your main program runs; the status callback starts the data streaming...

bertec_Stop(handle);

bertec_Close(handle);

As opposed to the polling version, using callbacks does not explicitly require you to check for the status of the Library or devices;

your callback will be invoked as soon as data becomes available. You also do not need to create a memory buffer for the

callback to place data into; memory is managed by the Library and your callback will get a pointer to a memory block.

DATA STREAMING AND MULTIPLE DEVICES

One of the main concerns with multiple devices is making sure the incoming data is temporally aligned. With external amplifiers

such as the AM6500 and AM6800, this can be accomplished using a SYNC wire connecting all the amplifier’s SYNC pins together.

This provides a common reference signal that is shared between the devices. The Library will use this SYNC signal to govern the

data synchronization and “reclocking” of the data rate. The source of the SYNC signal can be either internal (the amplifier

generates the pulse train) or external (such as a frequency generator or some other hardware).

Note that stand-alone USB plates with no external amplifiers do not have a SYNC pin and thus cannot use the SYNC signal; for

these devices, a ‘best effort’ is made to align the device data based on hardware clocks.

When synchronizing multiple devices, there are three broad modes:

None: all the device’s data is read and presented to the endpoint consumer (your bertec_DataStreamCallback method or

the bertec_ReadBufferedDataStream function) once each device has presented a complete block of data. The data may

not be temporally aligned and is the only mode available for stand-alone USB plates that do not have SYNC pins. This mode can

also be used when direct control over the SYNC and AUX pins are desired.

Bertec Corporation

14

Classic: a legacy mode provided for old hardware and firmware. In this mode, a master clock reference is provided by one device

on the SYNC pin and the other devices use it. In this mode it is not possible to start or stop the data via the SYNC pin or resample

the incoming data.

Clocked: the SYNC pin is used to receive an external clock signal (either from another amplifier or a secondary device), and the

Library aligns the data on the starting edge of the signal. Data is resampled by the Library to match the frequency on the SYNC

pin – thus with this mode, the apparent data rate can be varied from the fixed hardware rate of 1000Hz from a low as 150Hz to

as high as 4000Hz. Data can be stopped and restarted mid-stream by simply pausing the clock signals on the SYNC pin. This

mode also allows for a higher degree of data loss detection and recovery.

Using the Clocked method (passing either INTCLOCK or EXTCLOCK to the bertec_DataStreamControl structure) requires

specific hardware setups and current amplifiers with current firmware. Using either method allowed, and the hardware setup is

the similar with the only variation being the presence or lack of an external clock signal source.

For setups with an external clock source, a typical hardware setup would look like this:

Here the clock source is coming from the “User Provided” device.

For setups with an internal clock source (clock signal provided by a AM6500/AM6800), a typical hardware setup would look like

this:

Here the clock source is coming from the AM6800/AM6500 device at the ‘top’ of the logical stack.

In both cases, bertec_StartDataStream with the “Clocking” mode will perform the following steps, once all devices are

connected and detected (bertec_GetStatus returns DEVICES_READY):

1) Do all devices support the desired mode? If not, then bertec_StartDataStream will fail and return an error code. In

this case, your application may wish to defer back to either “None” or “Classic”.

2) When external clocking is being used, there must be a “quiet period” of around 600ms that occurs during the setup

phase of bertec_StartDataStream when no signals are being presented on the line (the line is logically held low or

Bertec Corporation

15

neutral); for internal clocking the Library controls the SYNC line by setting it to output mode and setting the value to 0.

This “quiet period” is used to validate the SYNC line connection and perform initial data frame alignments using the

hardware’s bertec_AdditionalData::eventCounter value.

3) If internal clocking is desired, the device selected in the data stream control block is set to generate pulses at the

desired frequency.

4) Data will start to appear on your bertec_DataStreamCallback function (if used) and the

bertec_ReadBufferedDataStream method as long as clock signals are present on the SYNC line.

With internal clocking (AM6500/AM6800 providing the clock), data will instantly begin to appear to the end point code

(callback/polling). With external clocking, this data will NOT begin to appear UNTIL the clock source begins to generate clock

signals. This can be either some form of hardware control (a button), a software signal to a 3rd part device, or some other

method. Due to the way the SYNC pin is used to resample the data, stopping the external clock has the same effect as ‘pausing’

the data stream.

The external clock rate can vary from any value from approximately 150Hz to 4000Hz, inclusive. This variation can occur at any

time, so a variable clock source does not require stopping and restarting the data stream.

IMMEDIATE DATA STREAMS

The Library provides a method where your application can receive data the instant each USB connection receives it, disregarding

the other devices. This data is per-device only and is not synchronized or resampled in any way; only zero offsets are applied,

and no computed channel logic is performed.

The Immediate data appears the instant a device is connected and delivers data to the PC. This delivery occurs outside of the

Data Stream logic and is generally provided as a method for your application to monitor the device for a UI display or some

other advanced operation.

Setting up the Immediate data callback is performed by using bertec_RegisterImmediateDeviceDataCallback with your

callback function. Your function will get a data frame along with information about the device delivering the data.

A simple example of using Immediate data would be something like this:

void myImmDataCallback (bertec_Handle hand, int index, const char* uid, const bertec_DeviceData

* data, void * user)

{

 processTheData(index, uid, data); // will be called by multple threads

}

bertec_Handle handle = bertec_Init();

bertec_RegisterImmediateDeviceDataCallback (handle, myImmDataCallback, NULL);

bertec_Start(handle);

...start the data stream or anything else; your program runs..

bertec_Stop(handle);

bertec_Close(handle);

The processTheData method would do whatever your code needs but should return as quickly as possible. As noted, the

callback method will be called by multiple threads so your code needs to allow for that. The Library will attempt to ensure that

your code is called in a thread-safe manner.

See bertec_RegisterImmediateDeviceDataCallback for more information on Immediate Data.

Bertec Corporation

16

ERROR CHECKING AND HANDLING

Most Library functions can return error codes and your application should check for them. See the section on Error Codes for

more information on what each code means and possible resolutions. Error codes values are defined in the header file.

Whenever the status of the Library changes, such as an error or loss of synchronization, any previously declared status callbacks

set by bertec_RegisterStatusCallback are invoked with the new status value. The current status value can always be

retrieved by calling the bertec_GetStatus function.

DATA PROCESSING AND FORMAT (BERTEC_DATAFRAME)

Since data can flow into the computer at a very rapid rate, it is critical that your program handle it as promptly as possible –

buffering it in a pre-allocated memory block is preferred. Should data not be read fast enough it will start to be lost, with older

data being overwritten as new data is collected. In this case a BERTEC_DATA_BUFFER_OVERFLOW error status will occur.

The data block (bertec_DataFrame, defined in the bertecif.h header file) presented to your application by either the callback

mechanism or the data polling function will contain at least one device’s worth of data, up to as many devices as there are

physically connected. Device data is stored in the bertec_DataFrame::device array – your application should iterate

through the bertec_DataFrame::deviceCount value for each of the bertec_DeviceData structures.

The bertec_DeviceData structure consists of two member structures: bertec_ChannelData, which contains the actual

data from the plate and any computed channel values, and bertec_AdditionalData, which contains the frame counter,

timestamp value, and hardware-specific SYNC and AUX input channels and event counters.

bertec_ChannelData consists of a result count and a floating-point array of channel data values. Each

bertec_ChannelData structure contains from 1 to 32 channel values (BERTEC_MAX_CHANNELS). Device channels such as Fz,

Mx etc. are presented in the order they occur within the device itself, and if the computed channel option is enabled (Cop, Cog,

Sway), these will appear after the hardware values. See bertec_SetComputedChannelsFlags for more information.

bertec_AdditionalData contains a 64-bit frame counter, timestamp value, and the hardware-specific SYNC and AUX input

channels and event counters. The timestamp value comes from the hardware device (if supported) and indicates when the force

data itself was sampled by the hardware not when the PC received the data; the frame counter value is when the data was

placed into the outgoing buffer (after being processed and subject to various settings such as down/up sampling, average, etc.).

Typically, both the hardware timestamp and frame counter will increment at the same 1kHz monatomic rate. Depending on the

settings these values can diverge, and the hardware timestamp can skip or repeat; the frame counter will never skip nor repeat.

The hardware samples the force data at a 1kHz rate, while it samples the SYNC and AUX pin lines at an 8kHz rate (thus both the

SYNC and AUX values are 8-bit LSB patterns, with a 1 bit value indicating the signal line was at a TTL +5v level, and 0 when it was

at ground). If the hardware supports it, the event counter value indicates the in-hardware edge detection for either the SYNC or

AUX values; see bertec_SetExternalClockMode, bertec_SetSyncPinMode, and bertec_SetAuxPinMode. These modes

can be used to change the apparent data rate speed (external clocking) or can be used as an additional input control (example: a

digital on/off switch as shown in BertecExample.cpp).

Bertec Corporation

17

SPECIFIC USE CASES

Most of the time, simply calling Init, Start, and then StartDataStream will be all you need or want to do. However, there are

specific use cases that might apply to your implementation so knowing about them ahead of time can be helpful.

SINGLE USB FORCE PLATE, NO SYNC

This is probably the most common mode of operation. A single force plate is connected via USB to the system, with no SYNC or

AUX pins available. The data rate in this case is fixed at 1000Hz and cannot be changed via resampling.

Implementing this use case in your code is the same as the code shown in Using Data Polling and Using Callbacks. The sample

file BertecExample.cpp provides a complete example suitable for command-line programs, and the sample file

SimpleFZReaderExample.cpp provides a stripped-down version that picks out the Fz channel and displays only that.

SINGLE AMPLIFER, NO SYNC

Along with the single USB plate, this is also a common mode of operation. A single force plate is connected to either an AM6500

or AM6800 amplifier, which is then connected to the PC via USB. While both the SYNC and AUX pins are available, they are not

used. The data rate in this case is fixed at 1000Hz and cannot be changed via resampling.

Implementing this use case in your code is no different than Single USB Force Plate No Sync or Using Data Polling and Using

Callbacks. The same sample code files BertecExample.cpp and SimpleFZReaderExample.cpp apply to this use case.

Bertec Corporation

18

MULTIPLE USB FORCE PLATES, NO SYNC

While less common than a single plate, multiple USB plates are often used in conjunction to provide a larger working area for

the subject. The data rate is fixed at 1000Hz and cannot be changed via resampling.

Implementing this use case in your code requires no additional changes from Single USB Force Plate No Sync or Using Data

Polling – the setup to StartDataStream remains the same, as does the data processing. The only difference between this use

case and a single plate is that the bertec_DataFrame::deviceCount value will not be 1. Depending on the needs of your

application, you can either loop through the bertec_DataFrame::device[] array or elect to ignore anything beyond the 1st

device. Both sample files BertecExample.cpp and SimpleFZReaderExample.cpp loop through the device counts to output the

force values.

Bertec Corporation

19

MULTIPLE AMPLIFERS, NO SYNC

Multiple amplifiers present the same use case interface as multiple USB plates, and code-wise ‘appear’ the same except for the

SYNC and AUX pins being available but not used. The data rate is fixed at 1000Hz and cannot be changed via resampling.

Implementing this use case in your code is no different than Multiple USB Force Plates No Sync or Using Data Polling and Using

Callbacks. The same sample code files BertecExample.cpp and SimpleFZReaderExample.cpp apply to this use case, as does any

device array handling your program implements.

INTERNAL CLOCK RESAMPLING, SINGLE PLATE

This use case is desirable for when your application requires control over the data rate. The Amplifier is set to read its own SYNC

pin that is generating clock pulses, and those clock pulses are used to drive the resampling logic. The SYNC pin becomes an

output, and while an external device can read it, it should not be injecting signals into it. Typically, nothing is connected to the

SYNC pin for this use case.

For this mode, you would want to pass bertec_DataStreamControl::SYNCPINMODE_INTCLOCK to the syncPinMode field,

along with a desired generation frequency (the changed lines from the generic case are highlighted). For example:

void myDataCallback(bertec_Handle hand, bertec_DataFrame * data, void * user)

{

 processYourData(data);

}

void myStausCallback(bertec_Handle hand, int status, void * user)

Bertec Corporation

20

{

 if (status == BERTEC_DEVICES_READY)

 { // start the data stream

 bertec_DataStreamControl streamControl = { 0 };

 streamControl.size = sizeof(streamControl);

 streamControl.syncPinMode = bertec_DataStreamControl::SyncPinMode::SYNCPINMODE_INTCLOCK;

 streamControl.internalClockFrequency = 500; // 500 hz

 bertec_StartDataStream(handle, &streamControl);

 }

}

bertec_Handle handle = bertec_Init();

bertec_RegisterDataStreamCallback(handle, myDataCallback, NULL);

bertec_RegisterStatusCallback(handle, myStausCallback, NULL);

bertec_Start(handle);

...your main program runs; the status callback starts the data streaming...

bertec_Stop(handle);

bertec_Close(handle);

This code will set up the device to generate 500Hz pulse signals on the SYNC pin, which the amplifier will read back into the data

stream on the syncData value. The resampler logic inside the system will use this to ‘downsample’ the data into an apparent

500Hz data rate. The sample file InternalClockingFZReaderExample.cpp shows this in action.

You can change the rate after the fact by using the function bertec_SetFrequencyGeneration with the new value. For

example:

bertec_SetFrequencyGeneration(handle, 0, bertec_IOPins::IO_PIN_SYNC, 2000);

Will change the SYNC pin output and resulting resampling rate from the above 500Hz to 2000Hz. The data frame rate from the

hardware is still fixed at 1000Hz, but the data is now being resampled into 2000Hz.

Special note: when using Internal Clock, you must set the internalClockFrequency value to a valid value (such as 250 or

1000); setting this to zero or a negative number will result in an error.

EXTERNAL CLOCK RESAMPLING, SINGLE PLATE

This use case is for when there is an external device providing clock signals to the amplifier on the SYNC pin, where the external

clock controls both the timing of the data and the resampling of it. The external clock pulses are used to drive the resampling

logic. The SYNC pin becomes an input. A typical use for such a setup would be cameras that provide a reference clock pulse.

Bertec Corporation

21

For this use case, you would want to pass bertec_DataStreamControl::SYNCPINMODE_EXTCLOCK to the syncPinMode

field instead of INTCLOCK. For example:

void myDataCallback(bertec_Handle hand, bertec_DataFrame * data, void * user)

{

 processYourData(data);

}

void myStausCallback(bertec_Handle hand, int status, void * user)

{

 if (status == BERTEC_DEVICES_READY)

 { // start the data stream

 bertec_DataStreamControl streamControl = { 0 };

 streamControl.size = sizeof(streamControl);

 streamControl.syncPinMode = bertec_DataStreamControl::SyncPinMode::SYNCPINMODE_EXTCLOCK;

 // Note there is no frequency being set

 bertec_StartDataStream(handle, &streamControl);

 }

}

bertec_Handle handle = bertec_Init();

bertec_RegisterDataStreamCallback(handle, myDataCallback, NULL);

bertec_RegisterStatusCallback(handle, myStausCallback, NULL);

bertec_Start(handle);

...your main program runs; the status callback starts the data streaming...

bertec_Stop(handle);

bertec_Close(handle);

The data streamer will start to deliver data once the external clock device delivers clock pulses on the SYNC pin. For best results,

the external clock should not be delivering pulses until after StartDataStream has been called.

The resampler logic inside the Library will perform the correct downsample/upsample to match the external clock pulses. The

clock frequency can be as low as 1Hz and as high as 4000Hz.

The sample file ExternalClockingFZReaderExample.cpp shows this in action.

With External clocking, your code cannot directly control the SYNC pin frequency by calling

bertec_SetFrequencyGeneration. Calling the function while in this mode will result in nothing happening since the SYNC

pin is an input, not an output. To control the frequency of the input signal your application will need to either control the source

of the clock signals, or provide a method for the user to manually interact with the device.

Bertec Corporation

22

MULTIPLE AMPLIFERS, SELF-SYNCING

With multiple AM6500/AM6800 amplifiers connected together via the SYNC pin, it becomes possible to synchronize the devices

together using the same clock source. In this use case, the clock source is one of the amplifiers, behaving in the same manner as

the Internal Clock Resampling, Single Plate use case while the other amplifier(s) are set up to behave in the manner as External

Clock Resampling, Single Plate. The code pattern is exactly the same as Internal Clock Resampling with a single device – the

Library detects multiple devices and takes care of the rest.

For this use case, you would want to pass bertec_DataStreamControl::SYNCPINMODE_INTCLOCK to the syncPinMode

field, along with a desired generation frequency for the device. For example, this will set the first device to generate a 500Hz

signal (again, the code differences from the generic case are highlighted):

void myDataCallback(bertec_Handle hand, bertec_DataFrame * data, void * user)

{

 processYourData(data);

}

void myStausCallback(bertec_Handle hand, int status, void * user)

{

 if (status == BERTEC_DEVICES_READY)

 { // start the data stream

 bertec_DataStreamControl streamControl = { 0 };

 streamControl.size = sizeof(streamControl);

 streamControl.syncPinMode = bertec_DataStreamControl::SyncPinMode::SYNCPINMODE_INTCLOCK;

 streamControl.internalClockSource = 0; // set the first device to be the clock source

 streamControl.internalClockFrequency = 500; // 500 Hz

 bertec_StartDataStream(handle, &streamControl);

 }

}

bertec_Handle handle = bertec_Init();

bertec_RegisterDataStreamCallback(handle, myDataCallback, NULL);

bertec_RegisterStatusCallback(handle, myStausCallback, NULL);

bertec_Start(handle);

...your main program runs; the status callback starts the data streaming...

bertec_Stop(handle);

bertec_Close(handle);

Bertec Corporation

23

This code will set up the device to generate 500Hz pulse signals on the SYNC pin, which the amplifier will read back into the data

stream on both amplifiers’ syncData value. The resampler logic inside the system will use this to ‘downsample’ the data into an

apparent 500Hz data rate. The sample file InternalClockingFZReaderExample.cpp shows this in action.

As with the single device Internal Clock Resampling, you can change the rate after the fact by using the function

bertec_SetFrequencyGeneration with the new value. For example:

bertec_SetFrequencyGeneration(handle, 0, bertec_IOPins::IO_PIN_SYNC, 2000);

Will change the SYNC pin output and resulting resampling rate from the above 500Hz to 2000Hz. The data frame rate from the

hardware is still fixed at 1000Hz, but the data is now being resampled into 2000Hz.

Special note: when using Internal Clock, you must set the internalClockFrequency value to a valid value (such as 250 or

1000); setting this to zero or a negative number will result in an error.

MULTIPLE AMPLIFERS, EXTERNAL CLOCK

As with Multiple Amplifiers, Self-Syncing, connecting multiple AM6500/AM6800 together via the SYNC pin allows the Library to

synchronize the devices together using the same clock source. Unlike Self-Syncing, this use case is where the clock source is an

external device as in External Clock Resampling, Single Plate. The code pattern is exactly the same as External Clock Resampling.

A typical use for such a setup would be cameras that provide a reference clock pulse.

For this use case, you would want to pass bertec_DataStreamControl::SYNCPINMODE_EXTCLOCK to the syncPinMode

field. For example:

void myDataCallback(bertec_Handle hand, bertec_DataFrame * data, void * user)

{

 processYourData(data);

}

void myStausCallback(bertec_Handle hand, int status, void * user)

{

 if (status == BERTEC_DEVICES_READY)

 { // start the data stream

 bertec_DataStreamControl streamControl = { 0 };

Bertec Corporation

24

 streamControl.size = sizeof(streamControl);

 streamControl.syncPinMode = bertec_DataStreamControl::SyncPinMode::SYNCPINMODE_EXTCLOCK;

 // Note there is no frequency being set

 bertec_StartDataStream(handle,&streamControl);

 }

}

bertec_Handle handle = bertec_Init();

bertec_RegisterDataStreamCallback(handle, myDataCallback, NULL);

bertec_RegisterStatusCallback(handle, myStausCallback, NULL);

bertec_Start(handle);

...your main program runs; the status callback starts the data streaming...

bertec_Stop(handle);

bertec_Close(handle);

As you can see, the code above is exactly the same as External Clock Resampling, Single Plate. The data streamer will start to

deliver data once the external clock device delivers clock pulses on the SYNC pins after there is a ‘quiet’ period where the

external clock is held low. If this held-low phase is not implemented, then StartDataStream will return an error. The Library

uses this held-low period and the start of the clock pulses to determine the data alignment from the devices.

The resampler logic inside the Library will perform the correct downsample/upsample to match the external clock pulses. The

clock frequency can be as low as 1Hz and as high as 4000Hz.

The sample file ExternalClockingFZReaderExample.cpp shows this in action.

With External clocking, your code cannot directly control the SYNC pin frequency by calling

bertec_SetFrequencyGeneration. Calling the function while in this mode will result in nothing happening since the SYNC

pin is an input, not an output. To control the frequency of the input signal your application will need to either control the source

of the clock signals, or provide a method for the user to manually interact with the device.

MULTIPLE AMPLIFERS, EXTERNAL CLOCK, EXTERNAL AUX LINE TRIGGERING

As an alternative to Multiple Amplifiers, External Clock, you can elect to connect the SYNC and AUX pins of multiple devices
together where the SYNC line connection forms the external clock source, and the AUX line controls the data start/stop
signaling. This allows for the eternal clock source to be continually running prior to the AM6500/AM6800 hardware reaching a
power-on state and provides for independent data flow control via the AUX line. The setup for this is similar to both External
Clock Resampling and Multiple Amplifiers, External Clock, with the addition of a hardware connection between all the AUX pins
and a slight code change to the setup of the Data Stream Control Block. A typical use for such a setup would be a camera system
that has a free-running clock source with an external trigger such as a flash detector or hardware push button.

Bertec Corporation

25

Note the extra AUX line connections in the above image.

For this use case, you need to pass bertec_DataStreamControl::SYNCPINMODE_EXTAUXCONTROL to the syncPinMode
field, and bertec_DataStreamControl::AUXPINMODE_START_PULSE_ONOFF to the auxPinMode field. For example:

void myDataCallback(bertec_Handle hand, bertec_DataFrame * data, void * user)

{

 processYourData(data);

}

void myStausCallback(bertec_Handle hand, int status, void * user)

{

 if (status == BERTEC_DEVICES_READY)

 { // start the data stream

 bertec_DataStreamControl streamControl = { 0 };

 streamControl.size = sizeof(streamControl);

 streamControl.syncPinMode = bertec_DataStreamControl::SyncPinMode::SYNCPINMODE_EXTAUXCONTROL;

 streamControl.auxPinMode = bertec_DataStreamControl::SyncPinMode:: AUXPINMODE_START_PULSE_ONOFF;

 // Note there is no frequency being set

 bertec_StartDataStream(handle,&streamControl);

 }

}

bertec_Handle handle = bertec_Init();

bertec_RegisterDataStreamCallback(handle, myDataCallback, NULL);

bertec_RegisterStatusCallback(handle, myStausCallback, NULL);

bertec_Start(handle);

...your main program runs; the status callback starts the data streaming...

bertec_Stop(handle);

bertec_Close(handle);

Bertec Corporation

26

As you can see, the code above is exactly the same as External Clock Resampling, Single Plate and Multiple Amplifiers, External

Clock, with the exception of the code highlighted in bold. The data streamer will start to deliver data once the AUX pin has

received a high-low transition pulse; prior to this, the AUX pin is expected to be held low. If this held-low phase is not

implemented, then StartDataStream will return an error. The Library uses this held-low period and the AUX pin high-low

transition to determine the data alignment from the devices. Transitions as short as 10ms are allowed.

The resampler logic inside the Library will perform the correct downsample/upsample to match the external clock pulses. The

clock frequency can be as low as 1Hz and as high as 4000Hz.

The sample file InternalClockingFZReaderExampleMultipleSync.cpp shows this in action.

Bertec Corporation

27

BERTEC DEVICE LIBRARY FUNCTIONS

All Library functions are exported as “C” function calls. For each function call, the name is called out, and then the function call

definition is provided, along with any relevant documentation and usage notes. A separate document covers the equivalent

.NET interfaces.

BERTEC_LIBRARYVERSION

unsigned int bertec_LibraryVersion (void)

This function returns the current version of the library, which should always match the defined value in

BERTEC_LIBRARY_VERSION. If it does not, then it is highly likely that data structures and library functions have been changed

and you should proceed with caution.

BERTEC_INIT

bertec_Handle bertec_Init(void)

The bertec_Init function initializes the Library and prepares it for use but does not start the actual device interaction –

bertec_Start must be used to begin the data discovery and data collection process. Your application must call this function

prior to using any other method beyond bertec_LibraryVersion – this includes registering any callback functions. The

returned value is a bertec_Handle object that should be retained by your application to be used for future interface calls.

Calling this multiple times is not recommended as it will force all existing connections closed and re-inits the Library.

If bertec_Init returns a NULL handle value, this indicates that the Library was unable to properly locate and load the

FTD2XX.DLL file (the Windows function GetLastError will return a ERROR_FILE_NOT_FOUND value). This DLL file is provided

by Future Technology Devices International and is required to communicate with their USB devices. Your Windows system may

already have this deployed (it is used by other USB devices), but it is suggested that you also deploy the FTDI D2XX driver

installation from http://www.ftdichip.com/Drivers/D2XX.htm as part of your own production installation.

BERTEC_CLOSE

void bertec_Close(bertec_Handle theHandle)

Call the bertec_Close to shut down all devices, unregister all callbacks, and stops all data collection. You must pass it the

same handle that bertec_Init provided. Failing to call this before unloading the Library or exiting your application may leave

devices running and possibly introduce memory leaks. Calling this multiple times will have no effect.

http://www.ftdichip.com/Drivers/D2XX.htm

Bertec Corporation

28

BERTEC_CHECKHANDLE

bool bertec_CheckHandle(bertec_Handle theHandle)

Verifies that theHandle value passed is a valid bertec_Handle item. Returns FALSE if this is not so, and TRUE if the handle is

valid. Provided so applications can validate their own runtime status and detect possible issues.

BERTEC_START

int bertec_Start(bertec_Handle theHandle)

This function starts the data gathering process, invoking callbacks if they are registered, and buffering incoming data as needed.

The function will return a zero value if the process is started correctly, otherwise it will return a

BERTEC_ERROR_INVALIDHANDLE return code.

BERTEC_STOP

int bertec_Stop(bertec_Handle theHandle)

This function stops the data gathering process. Callbacks will no longer be called (but will remained registered), and calling the

data polling function will return an error. The function will return a zero value for success; otherwise it will return a

BERTEC_ERROR_INVALIDHANDLE return code.

BERTEC_DATASTREAMCALLBACK TYPEDEF

BERTEC_REGISTERDATASTREAMCALLBACK

BERTEC_UNREGISTERDATASTREAMCALLBACK

void bertec_DataStreamCallback(bertec_Handle theHandle, const bertec_DataFrame * data, void *

userData)

int bertec_RegisterDataStreamCallback(bertec_Handle theHandle, bertec_DataStreamCallback fn,

void * userData)

int bertec_UnregisterDataStreamCallback(bertec_Handle theHandle, bertec_DataStreamCallback fn,

void * userData)

To use the data callback functionality as provided by the Library, you will need to register your callback function with

bertec_RegisterDataStreamCallback. Only one data callback may be registered at a time; if your application needs to

support multiple callbacks you will need to implement some sort of dispatching system. To stop using the callback without

stopping data acquisition, call bertec_UnregisterDataStreamCallback. Calling bertec_Close will automatically

unregister all callbacks as will calling bertec_Init.

In order to properly unregister the callback, you must call bertec_UnregisterDataStreamCallback with the same values

as you registered it with – both the callback itself, and the value of userData. Failing to do so may not unregister the callback

and return a negative result code.

Bertec Corporation

29

Both the register and unregister functions return a zero value for success. You should register your callbacks before calling

bertec_Start in order to ensure that no data is lost, and the callback function should be a C-style function using the “standard

call” specification. This is the default for most development environments.

Your callback function will be invoked each time there a block of data available and is called within the context of a separate

thread from your main process. This must be taken into account your application’s design; failure to do so will typically result in

strange user interface behavior.

The userData parameter is set when your register the callback and is not used by the Bertec Device Library but is passed

unchanged to your callback function. Typically, this is used as a pointer to a class or structure object. The bertec_DataFrame

data pointer refers to an internal block of memory that is maintained by the Library and thus should not be deleted, freed, or

otherwise modified by your application. The userData parameter is set when your register the callback, and is not used by the

Bertec Device Library but may be used by your callback for whatever it needs – for example, in C++ it could be used to pass a

pointer to a class object.

Since data collection and processing is time-critical, it is important that your applications process the data block as quickly as

possible and return.

Refer to the Data Processing and Format section for more information about the format and type of the data block.

BERTEC_IMMEDIATEDEVICEDATACALLBACK TYPEDEF

BERTEC_REGISTERIMMEDIATEDEVICEDATACALLBACK

BERTEC_UNREGISTERIMMEDIATEDEVICEDATACALLBACK

void bertec_ImmediateDeviceDataCallback(bertec_Handle theHandle, int deviceIndex, const char*

uid, const bertec_DeviceData * data, void * userData)

int bertec_RegisterImmediateDeviceDataCallback(bertec_Handle theHandle,

bertec_ImmediateDeviceDataCallback fn, void * userData)

int bertec_UnregisterImmediateDeviceDataCallback(bertec_Handle theHandle,

bertec_ImmediateDeviceDataCallback fn, void * userData)

This is for special use case functionality and is typically not needed for most code implementations.

Registers callbacks for a single device's data prior to any processing, such as resampling, averaging, filtering, or computed

channels. Zeroing offsets (bertec_ZeroNow, bertec_SetEnableAutozero) are handled prior to this callback being

invoked.

Each time the function registered to the callback is called, the function will get the device index, the unique ID of the device, and

a single block of data. The device index is a zero-based value that is the same as the index values passed to other methods such

as bertec_GetDeviceInfo. The unique ID (uid) value is a null-terminated string that can be used to further differentiate the

device and is unique to that device and is not the same as a serial number. See bertec_GetDeviceIDString for more

information.

This callback will be called at the data rate of the device (1000hz), and the ordering of the callback between devices is not

guaranteed (ex: you may get device # 1, 1, 2, 3, 3, 2, 1, 1 etc.). However, data ordering within the device itself is guaranteed (ex:

you will get block #1, 2, 3, 4, and never 1, 4, 3, 2 for example). If there is a connection issue, then data blocks may be skipped -

this can be detected by a discontinuous additionalData.timestamp value. The timestamp value comes from the device

Bertec Corporation

30

itself and increments at a monotonic rate (ex: 1,2,3,4 - a pattern of 1,2,4 indicates block #3 was dropped between the device

and the PC).

This callback is designed to be used as a feature where your application needs to have some sort of "monitoring" of the device

data stream outside of normal data processing.

Note: this callback is invoked within the context of the low-level USB interface thread - your implementation must return as

quickly as possible to avoid data loss.

BERTEC_STATUSCALLBACK TYPEDEF

BERTEC_REGISTERSTATUSCALLBACK

BERTEC_UNREGISTERSTATUSCALLBACK

void bertec_StatusCallback(bertec_Handle theHandle, int status, void * userData)

int bertec_RegisterStatusCallback(bertec_Handle theHandle, bertec_StatusCallback fn, void *

userData)

int bertec_UnregisterStatusCallback(bertec_Handle theHandle, bertec_StatusCallback fn, void *

userData)

To use the status callback functionality, you will need to register your callback function with

bertec_RegisterStatusCallback. Only one status callback may be registered at a time; if your application needs to

support multiple callbacks you will need to implement some sort of dispatching system. To stop using the callback, call

bertec_UnregisterStatusCallback. Calling bertec_Close will automatically unregister all callbacks.

In order to properly unregister the callback, you must call bertec_UnregisterStatusCallback with the same values as you

registered it with – both the callback itself, and the value of userData. Failing to do so may not unregister the callback and

return a negative result code.

Both the register and unregister functions return a zero value for success. You should register your callbacks before calling

bertec_Start in order to ensure that no data is lost, and the callback function should be a C-style function using the “standard

call” specification. This is the default for most development environments.

Your callback function will be invoked each time there is a change (from A to B but never from A to A or B to B) in the status of

code of the Library and will be called within the context of a separate thread from your main process. This must be taken into

account your application’s design; failure to do so will typically result in strange user interface behavior.

The status value passed to the callback is the same as what calling bertec_GetStatus would return. These are defined in

the header file and are also documented further down. The userData parameter is set when your register the callback, and is

not used by the Bertec Device Library but may be used by your callback for whatever it needs – for example, in C++ it could be

used to pass a pointer to a class object.

It is important that you process the status change as fast as possible and return as to not possibly interrupt the data collection

process.

Bertec Corporation

31

BERTEC_DEVICESORTCALLBACK TYPEDEF

BERTEC_REGISTERDEVICESORTCALLBACK

BERTEC_UNREGISTERDEVICESORTCALLBACK

void bertec_DeviceSortCallback (bertec_DeviceInfo* pInfos, int deviceCount, int* orderArray,

void * userData)

int bertec_RegisterDeviceSortCallback(bertec_Handle bHand, bertec_DeviceSortCallback fn, void *

userData)

int bertec_UnregisterDeviceSortCallback(bertec_Handle bHand, bertec_DeviceSortCallback fn, void

* userData)

To use the device sort order callback functionality, you will need to register your callback function with

bertec_RegisterDeviceSortCallback. Only one sorting callback may be registered at a time; if your application needs to

support multiple callbacks you will need to implement some sort of dispatching system. To stop using the callback, call

bertec_UnregisterDeviceSortCallback. Calling bertec_Close will automatically unregister all callbacks.

In order to properly unregister the callback, you must call bertec_UnregisterDeviceSortCallback with the same values

as you registered it with – both the callback itself, and the value of userData. Failing to do so may not unregister the callback

and return a negative result code.

Both functions return zero for success.

Your callback function should be a C-style function, using the “standard call” specification. This is the default for most

development environments.

The callback will be called each time the Library finishes discovering the list of devices attached to the computer. The userData

parameter is set when your register the callback, and is not used by the Library but is to be used by your callback for whatever it

needs – for example, in C++ it could be used to pass a pointer to a class object.

The pInfos pointer is the list of the devices discovered, which can be used to manipulate the orderArray to change which

device is #1, which is #2, etc. By default, the USB hardware orders the devices based on internal identifiers, which may or may

not be order you wish to have, and the orderArray is filled in with [0,1,2,3…]. By examining each bertec_DeviceInfo item

in the pInfos array (typically the bertec_DeviceInfo::serial value, which is serial number string of the device) and

changing the index values in orderArray, you can tell the library to move a device in front of others; the new ordering of

devices will be reflected in the outgoing data stream. This allows your project to always have a consistent ordering of devices

that may be different from the default hardware id/system connection order.

Do not delete, free, or otherwise modify the pInfos array – it is maintained internally by the Library. You should not delete or

free the orderArray, but it is expected that you change the contents to reflect your new device order.

BERTEC_GETSTATUS

int bertec_GetStatus(bertec_Handle theHandle)

Returns the current status value of the Library, which will be the same value that would be passed to any

bertec_StatusCallback that had been set. The status value will be one of the defined error numbers from the header file or

zero, which indicates no error.

Bertec Corporation

32

BERTEC_STARTDATASTREAM

BERTEC_STARTDATASTREAMASYNC

BERTEC_STARTDATASTREAMNOTIFCATION

int bertec_StartDataStream(bertec_Handle theHandle, const bertec_DataStreamControl*

pControlStruct)

int bertec_StartDataStreamAsync(bertec_Handle theHandle, const bertec_DataStreamControl*

pControlStruct, bertec_StartDataStreamNotifcation status_notifcation, void * userData)

void bertec_StartDataStreamNotifcation(bertec_Handle theHandle, const bertec_DataStreamControl *

control, int status, void * userData)

The Library will not deliver data on the DataStream callback or DataStream buffer polling until you call

bertec_StartDataStream or bertec_StartDataStreamAsync with the desired mode (data will be delivered to the

bertec_ImmediateDeviceDataCallback set by bertec_RegisterImmediateDeviceDataCallback with or without

calling bertec_StartDataStream). Calling bertec_StartDataStream or bertec_StartDataStreamAsync will set up the

desired data streaming mode for the connected devices, and limits which devices are read from. The Library does all the needed

checks on incoming data and SYNC/AUX pin signals, only returning once the expected conditions are met.

For information on how StartDataStream functions and the prerequisite conditions it enforces, see the Data Streaming and

Multiple Devices section of this document.

Calling bertec_StartDataStream or bertec_StartDataStreamAsync while a data stream is already started has the same

effect of calling bertec_StopDataStream first.

Some of the functionality here overlaps with other API methods, such as bertec_SetExternalClockMode, but provides a

different level of control.

Calling bertec_StartDataStream or bertec_StartDataStreamAsync with SYNCPINMODE_NONE and AUXPINMODE_NONE

as the control parameters will deliver data without any additional processing or control – this is considered ‘classic’ mode, and

will make the Library behave as it did in previous versions.

Note: Outside of SYNCPINMODE_NONE, SYNCPINMODE_CLASSIC, and AUXPINMODE_NONE, sync and aux pin functionally

requires updated firmware and matching hardware to function. If outdated firmware or unsupported hardware is used, the

Library will reject the requested mode type and return an error. See the bertec_DeviceInfo structure, hasAuxSyncPins

flag.

Note: Starting the data stream is only valid after devices have been detected; your application’s code should check the status of

the connection by either polling bertec_GetStatus or using bertec_StatusCallback to check for

BERTEC_DEVICES_READY. Once the devices are ready, then you can start data streaming. See the Example code for how to do

this.

The bertec_StartDataStream function is blocking non-async method and only returns once the required conditions have

been met. bertec_StartDataStreamAsync on the other hand will return immediately and the results of the call will be

passed through the status_notifcation callback pointer.

Bertec Corporation

33

The status_notifcation callback handler will get a pointer to the control struct in use, the bertec_StatusErrors status

of the data stream, and a user-defined pointer (typically cast to a C++ object or ‘this’). While the data stream is being set up,

BERTEC_FUNCTION_BUSY will be sent multiple times to the callback handler. A successfully setup of the data stream will result

in an BERTEC_NOERROR result; anything other than BERTEC_NOERROR or BERTEC_FUNCTION_BUSY should be considered an

error.

BERTEC_DATASTREAMCONTROL::SYNCPINMODE ENUM VALUES

State Value Explanation

SYNCPINMODE_NONE 0x00 The default state; the devices do no synchronization and do not handle

the external clock signal. All devices’ SYNC pin modes will be set to

SYNC_IN_SAMPLED.

This is the only mode supported on devices that do not have a SYNC pin.

SYNCPINMODE_CLASSIC 0x01 This is a basic mode and will work with older firmware; one device

delivers the master reference clock on the SYNC pin and the other

devices respond to it. In this mode it is not possible to start or stop the

data stream or resample the incoming data.

SYNCPINMODE_INTCLOCK 0x02 One device is generating a clock on the SYNC pin, taking the place of the

external clock. Data cannot be start or stopped based on the clock

signal, but the frequency can be changed via

bertec_SetFrequencyGeneration. The

bertec_DataStreamControl::internalClockSource index value

must be set to the device that will perform the frequency generation;

this device will have it's SYNC pin mode set to SYNC_OUT_FREQGEN and

all other device's SYNC pin mode set to SYNC_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

SYNCPINMODE_EXTCLOCK 0x03 The devices are getting an external clock connected to the SYNC pins,

and the Library will resample the data to match. Data can be started

and stopped based on the external clock input. All devices’ SYNC pin

modes will be set to SYNC_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

SYNCPINMODE_INTAUXCONTROL 0x04 One device is generating a clock on the SYNC pin, taking the place of the

external clock. Data cannot be start or stopped based on the clock

signal, but the frequency can be changed via

bertec_SetFrequencyGeneration. The

bertec_DataStreamControl::internalClockSource index value

Bertec Corporation

34

must be set to the device that will perform the frequency generation;

this device will have it's SYNC pin mode set to SYNC_OUT_FREQGEN and

all other device's SYNC pin mode set to SYNC_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

Unlike SYNCPINMODE_INTCLOCK, this mode will instead reference the

AUX pin for the data control, allowing for the SYNC line to immediately

generate pulses while the AUX is externally controlled. The

bertec_DataStreamControl::auxPinMode field is used to

determine when the data is to start/stop and the quiet period high or

low state.

The bertec_DataStreamControl::auxPinMode field must not be

set to AUXPINMODE_NONE when this mode selected; doing so will result

in a error return and the stream will not start.

SYNCPINMODE_EXTAUXCONTROL 0x05 The devices are getting an external clock connected to the SYNC pins,

and the Library will resample the data to match. Data can be started

and stopped based on the external clock input. All devices’ SYNC pin

modes will be set to SYNC_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

Unlike SYNCPINMODE_EXTCLOCK, this mode will instead reference the

AUX pin for the initial ‘quiet period’ which allows for the SYNC line to be

continually fed without holding it low (for example, an external clock

source that cannot be paused). The

bertec_DataStreamControl::auxPinMode field is used to

determine when the data is to start/stop and the quiet period high or

low state.

The bertec_DataStreamControl::auxPinMode field must not be

set to AUXPINMODE_NONE when this mode selected; doing so will result

in a error return and the stream will not start.

SYNCPINMODE_RUNHIGH 0x20 The data stream will only be delivered when the SYNC pin is at a high (1)

state. All devices’ SYNC pin modes will be set to SYNC_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

SYNCPINMODE_RUNLOW 0x21 The data stream will only be delivered when the SYNC pin is at a low (0)

state. All devices’ SYNC pin modes will be set to SYNC_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

Bertec Corporation

35

SYNCPINMODE_START_PULSE_ON 0x22 The data stream will only start once there is a low-high-low transition

on the SYNC pin. Once triggered, the data stream will not stop and will

continue to run; additional pulses will be ignored. All devices’ SYNC pin

modes will be set to SYNC_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

SYNCPINMODE_START_PULSE_ONOFF 0x23 The data stream will only start once there is a low-high-low transition

on the SYNC pin, and then continue to run until the next low-high-low

transition. Each pulse pair will cause data to start and then stop. All

devices’ SYNC pin modes will be set to SYNC_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

BERTEC_DATASTREAMCONTROL::AUXPINMODE ENUM VALUES

State Value Explanation

AUXPINMODE_NONE 0x00 The default state; the aux pin is not treated special in any way. This is

the only mode supported with SYNCPINMODE_CLASSIC.

All devices’ AUX pin modes will be set to AUX_NONE_AUX_IN_ZERO or

AUX_IN_SAMPLED depending on firmware.

This is the only mode supported on devices that do not have an AUX

pin.

AUXPINMODE_RUNHIGH 0x20 The data stream will only be delivered when the AUX pin is at a high (1)

state. All devices’ AUX pin modes will be set to AUX_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

AUXPINMODE_RUNLOW 0x21 The data stream will only be delivered when the SYNC pin is at a low (0)

state. All devices’ AUX pin modes will be set to AUX_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

AUXPINMODE_START_PULSE_ON 0x22 The data stream will only start once there is a low-high-low transition

on the SYNC pin. Once triggered, the data stream will not stop and will

continue to run; additional pulses will be ignored. All devices’ AUX pin

modes will be set to AUX_IN_SAMPLED.

Bertec Corporation

36

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

AUXPINMODE_START_PULSE_ONOFF 0x23 The data stream will only start once there is a low-high-low transition

on the AUX pin, and then continue to run until the next low-high-low

transition. Each pulse pair will cause data to start and then stop. All

devices’ AUX pin modes will be set to AUX_IN_SAMPLED.

Requires updated firmware; bertec_StartDataStream will return an

error if this is not supported.

BERTEC_DATASTREAMCONTROL STRUCTURE

Field Type Explanation

size int Size of the control structure; must be set to

sizeof(bertec_DataStreamControl). Setting this to zero will result in

the data stream using SYNCPINMODE_NONE and AUXPINMODE_NONE.

syncPinMode SyncPinMode Controls how the hardware SYNC pin is used. See the

bertec_DataStreamControl::SyncPinMode enum.

auxPinMode AuxPinMode Controls how the hardware AUX pin is used. See the

bertec_DataStreamControl::AuxPinMode enum.

internalClockSource int Device index of the internal clock source, if any. Only used when

syncPinMode = SYNCPINMODE_INTCLOCK.

internalClockFrequency float The frequency to be generated by the internal clock source. Only used

when syncPinMode = SYNCPINMODE_INTCLOCK and

internalClockSource is a valid index (0 to total # of devices – 1)

deviceFilterBitmask unsigned int Used to control which devices are delivering data via the

bertec_DataStreamCallback or

bertec_ReadBufferedDataStream.

Each bit corresponds to a device index; bit 0 == device index 1, bit 1 ==

index 1, etc. Setting this mask to a zero (all bits off) is treated the same

as all bits on (0xFFFFFFFF).

It is entirely possible to set the internalClockSource value to a

device that has been masked out by deviceFilterBitmask – doing

Bertec Corporation

37

effectively turns the masked device into an external clock source.

Setting deviceFilterBitmask to allow only 1 device through is not

an error.

NOTE: your application will need to handle mapping the resulting data

frame to any real device index.

BERTEC_STOPDATASTREAM

int bertec_StopDataStream(bertec_Handle theHandle)

Stops the current data stream and returns the hardware back to their default states. This will have the effect of resetting both

the syncPinMode and auxPinMode modes to NONE, clearing the device filter bitmask, and setting the external clock mode back

to internal (no resampling) for all devices.

The Data Stream callback and polling buffers will no longer receive any data until either bertec_StartDataStream or

bertec_StartDataStreamAsync are called.

BERTEC_GETCURRENTDATASTREAMCONTROL

int bertec_GetCurrentDataStreamControl(bertec_Handle theHandle, bertec_DataStreamControl*

pControlStructOut, size_t structOutSize)

Fills the passed bertec_DataStreamControl structure with a copy of the current control data set by

bertec_StartDataStream or bertec_StartDataStreamAsync; if there is no data stream currently set up this will return

an empty copy.

The structOutSize parameter must be equal to the size of the bertec_DataStreamControl structure; if this is not a

match, the function call will return an error.

BERTEC_GETBUFFEREDDATAAVAILABLE

int bertec_GetBufferedDataAvailable(bertec_Handle theHandle)

This function returns how many blocks or “frames” of data are available to be read from the internal data buffer. It is designed

to be used in conjunction with bertec_ReadBufferedDataStream and should not be used when data callbacks have been

set. This function will return zero if there are currently no blocks of data available to be read, or a negative value indicating an

error. A positive non-zero value indicates that there are at least that many data blocks available to be read, but there may be

more.

BERTEC_READBUFFEREDDATASTREAM

int bertec_ReadBufferedDataStream(bertec_Handle bHand, bertec_DataFrame * dataFrame, size_t

dataFrameSize)

Bertec Corporation

38

Instead of using the callbacks, you can use the bertec_ReadBufferedDataStream function to periodically pull the data from

the internal buffer maintained by the Library. This polling must be done frequently enough to avoid any possible data loss. Each

call to bertec_ReadBufferedDataStream will take one data frame from the internal buffer, copying the values into your

passed pointer and returning a success or failure result code. A return value of 1 indicates the data was copied from the internal

buffer to your passed dataFrame memory block – there may or may not be more data available (see

bertec_GetBufferedDataAvailable, above). A return value of 0 indicates that there was no data left in the buffer and your

passed dataFrame memory block was not changed. Any other return value is considered and error and should be handled

accordingly.

This call will always return at most 1 data frame, never more. Your dataFrameSize parameter must be equal to or greater

than the size of the outgoing data buffer, and account for the number of devices that are currently detected. Passing the wrong

size will result in an BERTEC_INVALID_PARAMETER error. The needed size computation is:

 dataFrameSize = sizeof(bertec_DeviceData) * DeviceCount + sizeof(bertec_DataFrame);

DeviceCount can either be the current number of connected devices or some arbitrarily large number. As long as the buffer

space is large enough, bertec_ReadBufferedDataStream will fill it with the buffered data.

As a convenience, the Library provides bertec_AllocateReadBufferedData and

bertec_FreeAllocatedReadBufferedData which your application can use to allocate an appropriate sized buffer for the

currently connected devices. The buffer allocation is processor-aligned, typically on 8-byte boundaries (needed for some CPU

architectures).

If there is no data remaining in the internal buffer, then this function will return zero and leave the dataFrame pointer contents

untouched. This makes continually reading from the internal buffer as simple as the following example:

while (bertec_ReadBufferedDataStream(hand,buff,buffsize) > 0)

{

 processData(buff);

}

Negative results from bertec_ReadBufferedDataStream indicates an error of some sort, and your application should handle

it appropriately.

Using the polling function is not recommended; in most cases you will get better performance if you use the Data Callback

feature and perform data buffering.

BERTEC_ALLOCATEREADBUFFEREDDATA

BERTEC_ALLOCATEREADBUFFEREDDATAFORCOUNT

BERTEC_FREEALLOCATEDREADBUFFEREDDATA

bertec_DataFrame * bertec_AllocateReadBufferedData(bertec_Handle bHand, size_t*

dataFrameSizeOut)

bertec_DataFrame * bertec_AllocateReadBufferedDataForCount(bertec_Handle bHand, int

deviceCount, size_t* dataFrameSizeOut);

int bertec_FreeAllocatedReadBufferedData(bertec_Handle bHand, bertec_DataFrame* dataFrame)

To facilitate create and using bertec_ReadBufferedDataStream, three convenience functions have been provided. Calling

bertec_AllocateReadBufferedData will allocate a buffer large enough to handle the currently connected number of

Bertec Corporation

39

devices – if the device count changes, you will need to release the memory and re-allocate it prior to calling

bertec_ReadBufferedDataStream.

Optionally, you may call bertec_AllocateReadBufferedDataForCount, passing a deviceCount value to pre-allocate for a

fixed number of devices instead of using the current device count. This method is preferred when the device count is expected

to change, or you wish to pre-allocate data prior to any connection event.

The allocated memory is processor-aligned, typically on 8-byte boundaries (needed for some CPU architectures).

The allocated memory must be released when you are done with it, typically when unloading the Library or at application

termination; failing to do so will result in memory leaks.

Call bertec_FreeAllocatedReadBufferedData with the allocated memory pointer to release the memory block.

BERTEC_CLEARBUFFEREDDATA

int bertec_ClearBufferedData(bertec_Handle bHand)

Clears all data that is currently in the internal buffer. Any unread data is immediately lost, even if callbacks are being used.

Returns zero for success.

BERTEC_GETMAXBUFFEREDDATASIZE

int bertec_GetMaxBufferedDataSize(bertec_Handle bHand)

Returns how many data samples that the Library will buffer before discarding old data. The default is 100 samples.

BERTEC_CHANGEMAXBUFFEREDDATASIZE

int bertec_ChangeMaxBufferedDataSize(bertec_Handle bHand,int newMaxSamples)

Changes the maximum amount of buffered data before the Library begins to discard old values. By default this is 100 samples,

which is appropriate for most systems. If you feel that your application cannot keep up or are using a very slow polling

frequency, then changing this value may help but you may be better off using the callback methods. Note that large values

(1000 or more) will dramatically increase memory usage and may impact program performance. There is a hard limit of 10,000

for the newMaxSamples value, which is equivalent to 10 seconds worth of data.

Calling this function will also discard all currently buffered data, so it suggested that your application calls this before calling the

bertec_Start function.

BERTEC_GETDEVICECOUNT

int bertec_GetDeviceCount (bertec_Handle bHand)

Bertec Corporation

40

Returns the number of supported devices connected to the computer. Only valid once bertec_Start has been called and

devices have actually been found (that is, bertec_GetStatus or the bertec_StatusCallback callback indicates a status

value equal to BERTEC_DEVICES_READY).

BERTEC_GETDEVICEINFO

int bertec_GetDeviceInfo(bertec_Handle bHand, int deviceIndex, bertec_DeviceInfo * info, size_t

infoSize)

Copies the information about the given device index into the info buffer and returns BERTEC_NOERROR if successful.

deviceIndex should be from 0 to one less than the number of connected devices; passing a value outside this range will result

in a return code of BERTEC_INDEX_OUT_OF_RANGE and leave the info pointer contents untouched.

If the info pointer is null or the infoSize value is less than the size of the bertec_DeviceInfo structure, then this function

will return BERTEC_INVALID_PARAMETER.

BERTEC_GETDEVICESERIALNUMBER

int bertec_GetDeviceSerialNumber(bertec_Handle bHand, int deviceIndex, char *buffer, size_t

bufferSize)

This is a convenience function that will return a device’s serial number directly instead of reading the entire device info into a

bertec_DeviceInfo struct and accessing the serial member. Returns BERTEC_NOERROR if successful.

deviceIndex should be from 0 to one less than the number of connected devices; passing a value outside this range will result

in a return code of BERTEC_INDEX_OUT_OF_RANGE and leave the buffer pointer contents untouched.

If the buffer pointer is null or the bufferSize value is less than 1, then this function will return

BERTEC_INVALID_PARAMETER.

BERTEC_GETDEVICEMODELNUMBER

int bertec_GetDeviceModelNumber(bertec_Handle bHand, int deviceIndex, char *buffer, size_t

bufferSize)

This is a convenience function that will return a device’s serial number directly instead of reading the entire device info into a

bertec_DeviceInfo struct and accessing the model member. Returns BERTEC_NOERROR if successful.

deviceIndex should be from 0 to one less than the number of connected devices; passing a value outside this range will result

in a return code of BERTEC_INDEX_OUT_OF_RANGE and leave the buffer pointer contents untouched.

If the buffer pointer is null or the bufferSize value is less than 1, then this function will return

BERTEC_INVALID_PARAMETER.

Bertec Corporation

41

BERTEC_GETDEVICEIDSTRING

int bertec_GetDeviceIDString(bertec_Handle bHand, int deviceIndex, char *buffer, size_t

bufferSize)

This function will return the hardware’s unique device id string, which is typically an 8-character alphanumeric string. Possible

examples are A2QYVYSD and NS94ASM8. This is the same value that is passed into bertec_ImmediateDeviceDataCallback

and bertec_DeviceTimestampCallback. Returns BERTEC_NOERROR if successful.

deviceIndex should be from 0 to one less than the number of connected devices; passing a value outside this range will result

in a return code of BERTEC_INDEX_OUT_OF_RANGE and leave the buffer pointer contents untouched.

If the buffer pointer is null or the bufferSize value is less than 1, then this function will return

BERTEC_INVALID_PARAMETER.

BERTEC_GETDEVICECHANNELS

int bertec_GetDeviceChannels(bertec_Handle bHand,int deviceIndex,char *buffer,size_t bufferSize)

This is a convenience function that will return a copy of the channel names directly instead of reading the entire device info into

a bertec_DeviceInfo structure and accessing the channelNames member. The channel names are copied into the buffer

parameter are null-separated. For example, if the device has the channels Fz, Mx, and My, the buffer contents will contain the

equivalent “C” string of "FZ\0\MX\0\MY\0\0".

This function will return the number of channels from the bertec_DeviceInfo structure and accessing the channelCount

member.

deviceIndex should be from 0 to one less than the number of connected devices; passing a value outside this range will result

in a return code of BERTEC_INDEX_OUT_OF_RANGE and leave the buffer pointer contents untouched.

If the buffer pointer is null or the bufferSize value is less than 1, then this function will return

BERTEC_INVALID_PARAMETER.

BERTEC_GETDEVICECHANNELCOUNT

int bertec_GetDeviceChannelCount(bertec_Handle bHand, int deviceIndex)

This is a convenience function that will return the number of channels for the given deviceIndex number. You can use this

function instead of reading the entire device info into a bertec_DeviceInfo struct and accessing the channelCount

member. This channel count (like the bertec_DeviceInfo::channelCount value) includes the optional computed channels

(Center of Pressure, Center of Gravity, and Sway) if they have been enabled (see bertec_SetComputedChannelsFlags).

deviceIndex should be from 0 to one less than the number of connected devices; passing a value outside this range will result

in a return code of BERTEC_INDEX_OUT_OF_RANGE.

Bertec Corporation

42

BERTEC_GETDEVICECHANNELNAME

int bertec_GetDeviceChannelName(bertec_Handle bHand,int deviceIndex,int channelIndex,char

*buffer,size_t bufferSize)

This is a convenience function that will return a copy of a single channel name directly instead of reading the entire device info

into a bertec_DeviceInfo struct and accessing the channelNames member. Returns the length of the channel name in ascii

characters (ex: if device #0 has a channel named “FZ” at channel index #1, this will return a length of 2). Available channels will

include the device’s hardware channels and any computed channels, if enabled (see bertec_SetComputedChannelsFlags).

deviceIndex should be from 0 to one less than the number of connected devices, and the channelIndex must be from 0 to

one less than that device’s channel count; passing values outside of either of these ranges will result in a return code of

BERTEC_INDEX_OUT_OF_RANGE and leave the buffer pointer contents untouched.

If the buffer pointer is null or the bufferSize value is less than 1, then this function will return

BERTEC_INVALID_PARAMETER.

BERTEC_SETAVERAGING

int bertec_SetAveraging(bertec_Handle bHand,int samplesToAverage)

Averages the number of samples from the devices, reducing the apparent data rate and result data by the value of

samplesToAverage (ex: a value of 5 will cause 5 times less data to come out). The samplesToAverage value should be >= 2

in order for averaging to be enabled. Setting samplesToAverage to 1 or less will turn off averaging (the default).

BERTEC_GETAVERAGING

int bertec_GetAveraging(bertec_Handle bHand)

Returns the currently set averaging value (by default 1) as set by bertec_SetAveraging.

BERTEC_SETLOWPASSFILTERING

int bertec_SetLowpassFiltering(bertec_Handle bHand,int samplesToFilter)

Performs a running average of the previous samplesToFilter, making the input data stream to appear smoother. The

samplesToFilter value should be >= 2 in order to turn the filter on. Setting samplesToFilter to 1 or less will turn filtering

off (the default). This does not affect the total number of samples gathered.

BERTEC_GETLOWPASSFILTERING

int bertec_GetLowpassFiltering(bertec_Handle bHand)

Returns the currently set low pass filtering value (by default 1) as set by bertec_SetLowpassFiltering.

Bertec Corporation

43

BERTEC_ZERONOW

int bertec_ZeroNow(bertec_Handle bHand)

By default, the data from the devices is not zeroed out and thus values coming from a connected device can be extremely high

or low. Calling the bertec_ZeroNow function with any load on the device will sample the data for a fixed number of seconds,

and then use the loaded values as the zero baseline (this is sometimes called “tare” for simpler load plates). Calling this after

calling bertec_Start will cause your data stream to rapidly change values as the new zero point is taken. This can be used in

conjunction with bertec_EnableAutozero.

For best results you should call this right after your application first receives a BERTEC_DEVICES_READY value from a

bertec_GetStatus call or a bertec_StatusCallback callback.

BERTEC_SETENABLEAUTOZERO

int bertec_SetEnableAutozero(bertec_Handle bHand,int enableFlag)

The Library has the ability to automatically re-zero the plate devices when it detects a low- or no-load condition (less than 40

Newtons for at least 3.5 seconds). Calling this function with a non-zero value for enableFlag will cause the Library to monitor

the data stream and continually reset the zero baseline values. Call this function with a zero value for enableFlag to turn this

off. This functionality will not interrupt your data stream, but you will get a sudden shift in values as the Library applies the zero

baseline initially.

BERTEC_GETENABLEAUTOZERO

int bertec_GetEnableAutozero(bertec_Handle bHand)

Returns the currently set auto zero flag set by bertec_SetEnableAutozero.

BERTEC_GETAUTOZEROSTATE

int bertec_GetAutozeroState(bertec_Handle bHand)

This function returns the current state of the autozero functionality. This function is rarely needed. Your program will need to

poll this on occasion to find the current state – there is no callback for when it changes.

The following values are returned from bertec_GetAutozeroState :

BERTEC_AUTOZEROSTATES ENUM VALUES

State Value Explanation

Bertec Corporation

44

AUTOZEROSTATE_NOTENABLED 0 Autozeroing is currently not enabled.

AUTOZEROSTATE_WORKING 1 Autozero is currently looking for a sample to zero against.

AUTOZEROSTATE_ZEROFOUND 2 The zero level has been found and is being applied. The Library will

continually attempt to zero automatically.

BERTEC_GETZEROLEVELNOISEVALUE

double bertec_GetZeroLevelNoiseValue(bertec_Handle bHand,int deviceIndex,int channelIndex)

Returns the zero level noise value for a device and channel. Either bertec_ZeroNow or bertec_EnableAutozero must have

been called prior to this function being used. The value returned is a computed value that can be used for advanced filtering.

Valid values are always zero or positive; negative values indicate either no zeroing or some other error.

BERTEC_SETUSBTHREADPRIORITY

void bertec_SetUsbThreadPriority(bertec_Handle bHand,int priority)

This function allows your code to change the priority of the internal USB reading thread. Typically, this is not something you will

need to do unless you feel that the USB interface needs more or less of the thread scheduling that Windows performs. The

priority value can range from -15 (lowest possible) to 15 (highest possible – this will more than likely prevent your UI from

running). The default system scheduling of the USB reading thread should be suitable for most applications.

BERTEC_SETSYNCPINMODE

int bertec_SetSyncPinMode(bertec_Handle bHand,int deviceIndex,bertec_SyncModeFlags newMode)

Sets the SYNC pin operating mode for those hardware devices that support it; for all others it does nothing. This will override

any exiting master/slave sync relationship that is currently established. Depending on the connected hardware, this may also

enable driving the external sync pin as a TTL signal or read it as a continually sampled input which will be presented on the

bertec_DeviceData.additionalData.syncData value.

BERTEC_SYNCMODEFLAGS ENUMS VALUES

Enum Name Value Description

Bertec Corporation

45

SYNC_IN_SAMPLED 0x00 The SYNC pin is an input, but its value is not interpreted in any way. This

mode is also known as SYNC_NONE. This is the default power-up mode. The

SYNC pin is sampled at a 8kHZ rate.

SYNC_OUT_MASTER 0x01 The SYNC pin is outputting a 1kHz square wave clock with a reference mark

embedded every 2000ms.

SYNC_IN_SLAVE 0x02 The SYNC pin is inputting a 1kHz square wave clock with optional reference

marks.

SYNC_OUT_PATGEN 0x04 The SYNC pin is outputting a random pattern. This is useful for debugging.

SYNC_IN_CONTINUOUS 0x05 The SYNC pin is inputting a continuous 1kHz square wave clock without

reference marks.

SYNC_OUT_CONTINUOUS 0x07 The SYNC pin is outputting a continuous 1kHz square wave clock without

reference marks.

SYNC_OUT_INSTANT 0x08 The SYNC pin is outputting the value most recently set via the

bertec_SetSyncAuxPinValues function.

SYNC_OUT_FREQGEN 0x09 The SYNC pin is acting as a frequency generator. The frequency is set via the

bertec_SetFrequencyGeneration function.

BERTEC_SETAUXPINMODE

int bertec_SetAuxPinMode(bertec_Handle bHand,int deviceIndex,bertec_AuxModeFlags newMode)

Sets the AUX pin operating mode for those hardware devices that support it; for all others it does nothing. Depending on the

connected hardware and the bertec_AuxModeFlags value, this may enable driving the external aux pin as a TTL signal or read

it as a continually sampled input which will be presented on the bertec_DeviceData.additionalData.auxData value.

BERTEC_AUXMODEFLAGS ENUM VALUES

Enum Name Value Description

AUX_NONE_AUX_IN_ZERO 0x00 AM6500: The AUX pin is an input, but its value is not interpreted in any way.

AM6800/AM6817: the input is taken from the ZERO pin, and a logic low level

keeps the analog output signals zeroed.

This is the default power-up mode.

Bertec Corporation

46

AUX_IN_SAMPLED 0x01 The AUX/ZERO pin is an input, and its value is not interpreted in any way. The

AUX pin is sampled at a 8kHZ rate.

AUX_OUT_INSTANT 0x02 The AUX is outputting the value most recently set via the

bertec_SetSyncAuxPinValues function.

AUX_OUT_PATGEN 0x04 The AUX pin is outputting a random pattern. This is useful for debugging.

BERTEC_SETPINMODE

int bertec_SetPinMode(bertec_Handle bHand, int deviceIndex, bertec_IOPins pin, bertec_PinModes

newMode)

Sets the given bertec_IOPins enum to the selected bertec_PinModes mode. This is only valid for devices that support the

extended SYNC and AUX feature set. Only one pin at a time can be set - if you desire to set multiple pins to the same or different

modes, you must call this function multiple times with different selected pin enum values.

Calling this with the pin parameter set to set to bertec_IOPins.IO_PIN_NONE will result in an error.

BERTEC_IOPINS ENUM VALUES

Enum Name Value Description

IO_PIN_SYNC 0x00 The SYNC pin, typically used for synchronizing data samples. Available on

AM6500, AM6800, AM6817 amplifiers.

IO_PIN_AUX 0x01 The AUX/ZERO pin, used for general-purpose I/O. Available on AM6500

amplifiers as the bidirectional AUX pin, and on AM6800 and AM6817

amplifiers as the input-only ZERO pin

IO_PIN_CH7 0x06 The CH7 output pin, available on AM6817E and higher amplifiers. Not

available on AM6500 amplifiers.

IO_PIN_CH8 0x07 The CH8 output pin, available on AM6817E and higher amplifiers. Not

available on AM6500 amplifiers.

IO_PIN_NONE 0xFF Special value only used in query requests; results in an error if used to set a

pin.

Bertec Corporation

47

BERTEC_PINMODES ENUM VALUES

Enum Name Value Description

PINMODE_IN_SAMPLED 0x00 The pin is an input, and its value is not interpreted in any way.

PINMODE_OUT_SYNC_MARK 0x01 The pin is outputting a 1kHz square wave clock with a reference mark

embedded every 2000ms.

PINMODE_IN_SYNC_MARK 0x02 The pin is inputting a 1kHz square wave clock with optional reference marks.

PINMODE_OUT_RANDPAT 0x04 The pin is outputting a random pattern. This is useful for debugging.

PINMODE_IN_CONTINUOUS 0x05 The pin is inputting a continuous 1kHz square wave clock without reference

marks.

PINMODE_OUT_CONTINUOUS 0x07 The pin is outputting a continuous 1kHz square wave clock without reference

marks.

PINMODE_OUT_INSTANT 0x08 The pin is outputting the value most recently set via the OUTPUT command.

PINMODE_OUT_FREQGEN 0x09 The pin is acting as a frequency generator, its frequency set via the

bertec_SetFrequencyGeneration function.

PINMODE_IN_ZERO 0x0A The pin input controls the zeroing of analog outputs. A low logic level keeps

the analog output signals zeroed. Only available on available on AM6817E

and higher amplifiers.

PINMODE_OUT_LOAD 0x0B The pin outputs the analog value of the load from the transducer. Depends on

hardware support for this to work.

BERTEC_SETSYNCAUXPINVALUES

int bertec_SetSyncAuxPinValues(bertec_Handle bHand,int deviceIndex, int syncValue, int auxValue)

Sets both the SYNC and AUX output pins to the passed values; these values only take effect if the given pin has been set to

SYNC_OUT_INSTANT or AUX_OUT_INSTANT. If the pin has not been set to SYNC_OUT_INSTANT or AUX_OUT_INSTANT or the

device does not support the setting these values, then the passed value(s) are ignored. Note that you must pass both values

even if you intend to only set one pin or the other pin is not set to instant output mode. Only the pin(s) set to _INSTANT will be

changed; pins not set to _INSTANT will ignore this request.

Bertec Corporation

48

The syncValue and auxValue parameters are treated as a 0/1 of/on value; passing a value of 0 will turn the pin off, and any

non-zero value (ex: 1, 16, 255) will turn the pin on.

BERTEC_RESETSYNCCOUNTERS

int bertec_ResetSyncCounters(bertec_Handle bHand)

If there are multiple devices, this function will reset the internal counters that account for sync offset and drifts. This is an

advanced function that is typically not used and does nothing if there is only a single device connected. Returns 0 for success.

BERTEC_RESETDEVICETIMESTAMP

int bertec_ResetDeviceTimestamp(bertec_Handle bHand, int deviceIndex, int64 newTimestampValue)

This will set the given device’s internal 64-bit clock timer value to the passed newTimeStampValue parameter. This is only valid

for devices that support the extended Timestamp feature and will be ignored otherwise and return a

BERTEC_UNSUPPORED_COMMAND error. The change takes place immediately, but due to signal propagation on the USB line this

may take up to two samples for the new value to actually appear in the incoming data stream.

BERTEC_RESETALLDEVICETIMESTAMPS

int bertec_ResetAllDeviceTimestamps(bertec_Handle bHand, int64 newTimestampValue)

This will set all of the attached device’s internal 64-bit clock timer values to the passed newTimeStampValue parameter. This is

only valid for devices that support the extended Timestamp feature and will be ignored otherwise and return a

BERTEC_UNSUPPORED_COMMAND error. The change takes place immediately, but due to signal propagation on the USB line this

may take up to two samples for the new value to actually appear in the incoming data stream.

BERTEC_RESETDEVICETIMESTAMPATMARK

int bertec_ResetDeviceTimestampAtMark(bertec_Handle bHand, int deviceIndex, int64

newTimestampValue, int64 futureConditionTime)

This will set the given device’s internal 64-bit clock timer value to the passed newTimeStampValue parameter once the

device’s internal clock timestamp value has reached or exceeded the futureConditionTime value. For example, if the

internal clock timestamp is currently at 100 and this command is issued with a condition of 200 and a new value of 0, once the

internal clock reaches 200 it will be reset back to 0. This reset is only done once; it will not reset multiple times. This is only valid

for devices that support the extended Timestamp feature and will be ignored otherwise and possibly return

BERTEC_UNSUPPORED_COMMAND error.

Bertec Corporation

49

BERTEC_RESETALLDEVICETIMESTAMPSATMARK

int bertec_ResetAllDeviceTimestampsAtMark(bertec_Handle bHand, int64 newTimestampValue, int64

futureConditionTime)

This will set all of the attached device’s internal 64-bit clock timer values to the passed newTimeStampValue parameter once

each device’s internal clock timestamp value has reached or exceeded the futureConditionTime value (each device is

triggered independently). For example, if the internal clock timestamp is currently at 100 and this command is issued with a

condition of 200 and a new value of 0, once the internal clock reaches 200 it will be reset back to 0. This reset is only done once;

it will not reset multiple times. This is only valid for devices that support the extended Timestamp feature and will be ignored

otherwise and return a BERTEC_UNSUPPORED_COMMAND error.

BERTEC_SETEXTERNALCLOCKMODE

int bertec_SetExternalClockMode(bertec_Handle bHand, int deviceIndex, bertec_ClockSourceFlags

newMode)

Enables the ability for the Library to clock the device’s data stream against an external sync or other clock source that is tied into

the physical SYNC connection on the amplifier. This allows the signal being applied to the SYNC pin to effectively override the

internal 1000hz hardware clock on the device, allowing the data to be either under or over sampled as needed. Depending on

the values of the newMode flags, the data may be either delay-sampled by up to 4.875ms or instead skipped/replicated as

needed.

Using an external clock disables any Averaging, low-pass Filtering, and multiple plate sync abilities that were previously set up,

and resets the Sync Pin Mode to a value of SYNC_NONE. After setting this mode you should also call

bertec_ClearBufferedData to discard any already collected data that you would otherwise need to process.

BERTEC_CLOCKSOURCEFLAGS ENUM VALUES

Flag Name Value Explanation

CLOCK_SOURCE_INTERNAL 0x00 This is the default state and the Library will present data at the native

device rate (1000hz). Averaging will affect this. All Sync and Aux

modes are available, including multiple device sync.

CLOCK_SOURCE_EXT_RISE 0x01 This will cause data to be presented whenever the SYNC pin changes

from low (0) to high (1), which can be higher (up to 4000hz) or lower

(down to 1hz). Averaging is disabled, and the SYNC mode is forced to

SYNC_NONE. All other Aux modes are available, but multiple device

sync is disabled.

CLOCK_SOURCE_EXT_FALL 0x02 This will cause data to be presented whenever the SYNC pin changes

from high (1) to low (0), which can be higher (up to 4000hz) or lower

(down to 1hz). Averaging is disabled, and the SYNC mode is forced to

Bertec Corporation

50

SYNC_NONE. All other Aux modes are available, but multiple device

sync is disabled.

CLOCK_SOURCE_EXT_BOTH 0x03 This will cause data to be presented whenever the SYNC pin changes

from either a low-to-high or high-to-low state. Averaging is disabled,

and the SYNC mode is forced to SYNC_NONE. All other Aux modes are

available, but multiple device sync is disabled.

CLOCK_SOURCE_NO_INTERPOLATE 0x80 By default the ClockSource logic will attempt to perform a fractional

delay on the input data. This can cause the data signal to appear to be

delayed by up to 4.875ms. If such a delay would cause problems with

your code path you will need to pass this bit flag along with the clock

source to change from a fractional delay to a simpler skip-and-fill.

Skip-and-fill will either omit or duplicate channel data depending on

when the edge signal occurs in the data flow.

Note: your hardware needs will dictate if this mode of operation is suitable for your configuration. Any hardware that is to be

used as an external clock signal must be capable of delivering the proper signal (voltages/pattern) to the SYNC connection,

otherwise random or no samples will result in the data stream.

BERTEC_SETAGGREGATEDEVICEMODE

BERTEC_GETAGGREGATEDEVICEMODE

int bertec_SetAggregateDeviceMode(bertec_Handle bHand, bertec_AggregateDeviceMode newMode)

bertec_AggregateDeviceMode bertec_GetAggregateDeviceMode(bertec_Handle bHand)

Enables or disables the ability to combine the output of two plates as one long virtual plate. This can be enabled or disabled at

any point, and the output from the callback or data block will change accordingly. If this mode is turned on then the

bertec_DataFrame::deviceCount value will be set to 1 even if there are more than one device connected, but

Bertec_GetDeviceCount will always return the true number of devices connected to the system.

In order for this to work properly both devices must be of the same type, same size, and have the same data channels. You

should not try to combine a balance plate with a force plate, or a sport plate with a functional model for example.

BERTEC_AGGREGATEDEVICEMODE ENUM VALUES

Mode Name Value Explanation

NO_AGGREGATEDEVICEMODE 0x00 the default mode - no special processing is done

FRONT_TO_BACK_AGGMODE 0x01 the plates are arranged length-wise, front to back, with the front plate

rotated 180 degrees.

Bertec Corporation

51

SIDE_BY_SIDE_AGGMODE 0x02 the plates are arranged side-by-side (i.e.: treadmill), with the right

plate rotated 180 degrees

BERTEC_SETCOMPUTEDCHANNELSFLAGS

BERTEC_GETCOMPUTEDCHANNELSFLAGS

int bertec_SetComputedChannelsFlags(bertec_Handle bHand, bertec_ComputedChannelFlags newMode)

bertec_ComputedChannelFlags bertec_GetComputedChannelsFlags(bertec_Handle bHand)

Enables or disables the ability to compute certain channels from the force device's FZ, MX, and MY values. If the device does not

have the appropriate channels, then setting this will have no effect. Note that turning on the COG and Sway Angle channels may

incur a small CPU usage penalty and require setting the subject height via bertec_SetSubjectHeight. The COP calculation is

a simple moment over force function and has little to no additional CPU overhead. The COP also does not need the subject

height set in order to be used.

This function must be called after bertec_Init but before bertec_Start; calling this while devices are actively delivering

data will result in an error.

Setting these flags will affect both the channel names (bertec_DeviceInfo::channelNames,

bertec_GetDeviceChannels, bertec_GetDeviceChannelName) and the actual data frame data (the channel count field in

bertec_DeviceData::channelData)

BERTEC_COMPUTEDCHANNELFLAGS ENUM VALUES

Flag Name Value Explanation

NO_COMPUTED_CHANNELS 0x00 This is the default state; no additional channels will be computed.

COMPUTE_COP_VALUES 0x01 COP x and COP y values will be computed for any matched set of FZ,

MX, and MY values. If the force plate is “split” in that it has both a Left

and Right component, then additional COP values will be computed

and presented.

COMPUTE_COG_VALUES 0x02 COG (center of gravity) x and y values will be computed for any

matched set of FZ, MX, and MY values. The COG is based on the both

the computed COP value and the set Subject Height value, and is

calculated using an integrated Butterworth filter.

COMPUTE_SWAY_ANGLE 0x04 A SwayAngle channel will be computed using the COG y value against

the Subject Height value. If the height has not been set or is invalid,

the SwayAngle will be zero.

Bertec Corporation

52

COMPUTE_ALL_VALUES 0x07 All possible computed channels will be generated.

BERTEC_SETSUBJECTHEIGHT

int bertec_SetSubjectHeight(bertec_Handle bHand, float heightMM)

In order for the computed COG and SwayAngle channels to work properly, the height of the subject on the plate must be set to

the correct height. If the subject height is set to zero or is otherwise invalid, then both the COG and SwayAngle computed values

will be zero.

Unlike the computed channels, changing the subject height while data is being collected is supported and is expected.

BERTEC_GETSUBJECTHEIGHT

int bertec_GetSubjectHeight(bertec_Handle bHand, float* heightMMOut)

Returns the last value set by bet bertec_SetSubjectHeight into the heigthMMOut pointer. If bertec_SetSubjectHeight

was never called, then this function will set the float pointed to by heightMMOut to zero.

Returns an error if the heightMMOut pointer value is null.

BERTEC_DEVICEDATARATE

float bertec_DeviceDataRate(bertec_Handle bHand, int deviceIndex)

This function returns the dynamically computed data rate value of the connected devices, in hertz. This value is updated every 2

seconds (2000 ms) per device. On most hardware configurations, this value will typically be around 1000hz; if external clocking

mode is enabled for the device (see bertec_SetExternalClockMode), then this value is based on the input signal to the SYNC pin.

This function is provided primarily as a way for any user interface display to show the current data rate from the device. Please

note, that due to the way the PC hardware operates, this value will “flutter” approximately ± 5.0hz. Even when using an external

clock signal, the devices will always deliver data at a fixed 1000hz.

BERTEC_REDETECTCONNECTEDDEVICES

int bertec_RedetectConnectedDevices(bertec_Handle bHand)

Signals that the Library that is should perform a device rescan and reinit all connected devices. This is the same as physically

unplugging and then replugging all devices from the USB connection at the same time. This function is provided primarily to

force a redetection of multiple plates that have been added after the SDK has been started. Calling

bertec_RedetectConnectedDevices does not block and returns immediately.

Bertec Corporation

53

The status code BERTEC_LOOKING_FOR_DEVICES will be emitted via the Status callback (if any), followed by either

BERTEC_NO_DEVICES_FOUND if there are no devices connected, or BERTEC_DEVICES_READY if one or more devices have

been found.

BERTEC_SETDATARATERESAMPLING

int bertec_SetDataRateResampling(bertec_Handle bHand, int deviceIndex, int newFrequency)

Sets and enables the data rate resampling. This will disable both the SYNC and AUX pin modes, returning the device to SAMPLED

mode - the SYNC and AUX data values in the Data Frame will always be zero. This feature will work with any device, even if there

is no hardware support for SYNC or AUX.

This is an advanced function and is typically not needed for most projects. For systems equipped with AM6500 or AM6800, the

preferred method is to use the External Clock Mode and use an externally generated pulse signal to control the data rate

resampling. However, for setups without the appropriate hardware this functionality is provided in software.

Data rate resampling is usually done to match the output rate from the device(s) to a separate piece of hardware – for example,

a camera running at 125hz.

Passing 0 for newFrequency will turn off the data rate resampling and return to the hardware data rate of 1000hz. This will also

allow both the SYNC and AUX modes to be changed.

Note that not all frequencies are available; the resulting value is equal to floor(8000/round(8000/newFrequency)). Data

rate resampling can also introduce delays in the data.

Setting or changing the resampling value will cause momentary fluctuations in the data until the resampling algorithm has

collected enough data. Typically, you should discard up to 500 samples after setting or changing this value.

BERTEC_SETFREQUENCYGENERATION

int bertec_SetFrequencyGeneration(bertec_Handle bHand, int deviceIndex, bertec_IOPins pin,

float frequency)

Sets the frequency generator parameters for a given bertec_IOPins enum. The frequency generator is only active if the

bertec_IOPins pin has been set to bertec_PinModes.PINMODE_OUT_FREQGEN. If the hardware does not support

frequency generation or the selected pin is not in this mode, the function will return a BERTEC_UNSUPPORED_COMMAND error.

Currently, only the SYNC pin supports frequency generation, and the typical range for this is approximately 183hz to 4000hz.

BERTEC_GETFREQUENCYGENERATIONLIMITS

int bertec_GetFrequencyGenerationLimits(bertec_Handle bHand, int deviceIndex, bertec_IOPins

pin, float* frequencyMin, float* frequencyMax)

Gets the frequency generator min and max limits for a given bertec_IOPins enum. If the device or the selected pin does not

support frequency generation, then this function will return a BERTEC_UNSUPPORED_COMMAND error.

Bertec Corporation

54

If either the frequencyMin or frequencyMin parameters are null, then this function will return a

BERTEC_INVALID_PARAMETER error.

You can use this function to determine if the device and pin supports frequency generation, and a valid range for your

application to choose from.

BERTEC_SETUNIFIEDDATAMODE

BERTEC_GETUNIFIEDDATAMODE

int bertec_SetUnifiedDataMode(bertec_Handle bHand, int enabled)

int bertec_GetUnifiedDataMode(bertec_Handle bHand)

By default, the library will only present data via the callback or data polling when all devices have data, allowing for software

sync, device aggregation, and data averaging. This is typically the desired mode, but some applications may benefit from turning

this functionality off.

If the enabled parameter is set to 0 (false), then the library will present data whenever any device has data, even if the other

devices do not. Software sync, device aggregation, and data averaging will not be performed in this mode. The data frame

received by the callback or data polling will be incomplete; your implementation must be ready to check for and handle cases

where device #1 presents data but #2 will not, and then some frames later that will change to where #2 has data but #1 does

not; the data will appear to be unaligned with zero values for the no-data-present device structures.

The simplest method to handle this situation is to check the bertec_ChannelData::count value for the

bertec_DeviceData structure; if this is zero, there is no data for that device in the current frame and that device data can be

ignored or dropped. For example:

public void onData(bertec_Handle bHand, const bertec_DataFrame * dataFrame, void * userData)

{

 for (int deviceNum = 0; deviceNum < dataFrame->deviceCount; ++ deviceNum)

 {

 const bertec_DeviceData& deviceData = dataFrame->device[devNum];

 int channelCount = deviceData.channelData.count;

 if (channelCount > 0)

 SingleDeviceDataDataHandler(deviceNum, deviceData);

 }

}

This example code will only call SingleDeviceDataDataHandler when the data frame for the device has channel data. If

UnifiedDataMode is left on, then this code will still work with no changes required.

Turning off unified data implies that your application will do its own post-processing of the data, using either the sequence

number or timestamp values to perform specialized alignment.

Call this function prior to calling Start to ensure the data being received is in the format expected.

Using non-unified data mode with a single plate has no net effect.

Computed channels, device clocks and sync pin settings (bertec_SetComputedChannelsFlags,

bertec_ResetDeviceTimestamp, bertec_SetExternalClockMode, etc) will still function if unified data is turned off;

however, data averaging and aggregation (bertec_SetAveraging, bertec_SetAggregateDeviceMode) along with

timestamp alignment (bertec_SetTimestampAlignmentMode) will not.

Bertec Corporation

55

BERTEC_SETTIMESTAMPALIGNMENTMODE

BERTEC_GETTIMESTAMPALIGNMENTMODE

int bertec_SetTimestampAlignmentMode (bertec_Handle bHand, int enabled)

int bertec_GetTimestampAlignmentMode (bertec_Handle bHand)

By default, the library will not attempt to align the incoming device data using the timestamp fields. Calling

bertec_SetTimestampAlignmentMode with a TRUE or 1 value will turn on this feature, telling the library to align the

outgoing combined data frame by comparing the incoming timestamps.

Aligning the timestamps may introduce data delays or dropped data frames from one or more devices. It is almost always better

to instead use an eternal hardware data marker on the SYNC or AUX channel and look for that in the data frame stream.

Turning off the Unified Data Mode will also effectively turn this off, since the data frame is no longer combined.

BERTEC_SETDEVICELOGDIRECTORY

void bertec_SetDeviceLogDirectory(const char *outputFolder,int maxAgeDays)

Sets or changes the output folder for the device logs and how long existing log files should be kept. By default log files are kept

in %TEMP%/bertec-device-logs and are retained for up to 7 days. Passing NULL or an empty string in the outputFolder

parameter will default to the temp folder and 0 for maxAgeDays will turn off old file cleaning. This function should be called

prior to any other Library function, including bertec_Init; otherwise there will be log data split between two separate files as

the directory changes.

BERTEC_GETCURRENTDEVICELOGFILENAME

int bertec_GetCurrentDeviceLogFilename(char* buffer,int maxBufferSize)

Fills the string buffer pointed to by the buffer parameter with the current log filename, including the path prefix, and returns

the length of the string. Passing either NULL for the pointer or 0 for maxBufferSize will not fill the buffer but instead return

how much space is needed.

This can be used to copy or otherwise reference the output logfile that is being created by the internal diagnostics of the

Library.

Bertec Corporation

56

BERTEC_DEVICELOGCALLBACK TYPEDEF

BERTEC_REGISTERDEVICELOGCALLBACK

BERTEC_UNREGISTERDEVICELOGCALLBACK

void bertec_DeviceLogCallback(const char* pszText, void * userData)

int bertec_RegisterDeviceLogCallback(bertec_Handle bHand, bertec_DeviceLogCallback fn, void *

userData)

int bertec_UnregisterDeviceLogCallback(bertec_Handle bHand, bertec_DeviceLogCallback fn, void *

userData)

This will set a callback that is invoked whenever a new line of text is being written to the device log file. The callback is called

within the context of a separate worker thread and as such your application code should handle things appropriately. This

functionality is primarily designed as an advanced method for applications to provide additional monitoring and diagnostic

displays. The leading digits for the string are the millisecond timestamp when the message was generated, and will differ from

when the text is actually logged and sent to your function.

Bertec Corporation

57

ERROR/STATUS CODES (BERTEC_STATUSERRORS)

Error Value Explanation

BERTEC_NOERROR 0 Generic no error result.

BERTEC_NO_BUFFERS_SET -2 There are no internal buffers allocated. This is a critical error.

BERTEC_DATA_BUFFER_OVERFLOW -4 Data polling wasn't performed for long enough, and data has been lost.

Can also occur if your callback method is taking too long.

BERTEC_NO_DEVICES_FOUND -5 There are apparently no devices attached. Attach a device.

BERTEC_DATA_READ_NOT_STARTED -6 You have not called bertec_Start yet.

BERTEC_NO_DATA_RECEIVED -11 No data is being received from the devices, check the cables.

BERTEC_DEVICE_HAS_FAULTED -12 The device has failed in some manner. Power off the device, check all

connections, power back on.

BERTEC_UNABLE_TO_START_STARTED -30 bertec_Start was called twice; the second call was ignored.

BERTEC_UNABLE_TO_START_STOPPING -31 bertec_Start was called while the last bertec_Stop call was still

being processed; the bertec_Start call was ignored.

BERTEC_UNABLE_TO_STOP_NOTRUNNING -32 The library is already stopped or was never running (safe to ignore).

BERTEC_UNABLE_TO_STOP_STOPPING -33 bertec_Stop was called twice; the second call was ignored.

BERTEC_UNABLE_TO_STOP_STARTING -34 bertec_Stop was called while the last bertec_Start call was still

being processed; the bertec_Stop call may not take effect or take

effect later than expected.

Bertec Corporation

58

BERTEC_UNABLE_TO_START_FAILED -35 Internal error - device threads have failed to start and the Library cannot

be used. This is a fatal error.

BERTEC_UNABLE_TO_STOP_FAILED -36 Internal error - device threads have failed to shut down and you may

need to hard-kill the application (very unexpected).

BERTEC_LOOKING_FOR_DEVICES -45 Scanning for any connected devices. This status will be followed by

either BERTEC_DATA_DEVICES_READY or

BERTEC_NO_DEVICES_FOUND.

BERTEC_DATA_DEVICES_READY -50 There are devices connected and data is being delivered.

BERTEC_AUTOZEROSTATE_WORKING -51 Currently finding the zero values.

BERTEC_AUTOZEROSTATE_ZEROFOUND -52 The zero leveling value was found.

BERTEC_ERROR_INVALIDHANDLE -100 The bertec_Handle passed to a function is incorrect.

BERTEC_UNABLE_TO_LOCK_MUTEX -101 Unable to properly manage a thread mutex context. This is a fatal error.

BERTEC_UNSUPPORED_COMMAND -200 The current firmware and/or hardware does not support the function

that was just called. The device should still function normally but the

expected functionality will not be in effect.

BERTEC_INVALID_PARAMETER -201 One or more of the parameters to a function call are incorrect (ex: null

pointer, negative size, etc.).

BERTEC_INDEX_OUT_OF_RANGE -202 The device index value is negative or more than the number of devices

currently attached to the system.

BERTEC_FUNCTION_BUSY -203 Either the method or a sub-method is busy - possibly calling the same

function from multiple threads.

BERTEC_GENERIC_ERROR -32767 Any error that has no predefined value.

Bertec Corporation

59

TROUBLESHOOTING

If your application will not launch, make sure that both the BertecDevice.dll and ftd2xx.dll are in the same folder as your

application.

For any other issues, please contact Bertec Technical Support.

Bertec Corporation

60

DOCUMENT REVISION HISTORY

Date Revision Description Author

01/15/2009 1.00 Initial Revision Todd Wilson

03/28/2012 1.80 Updated with current version Todd Wilson

06/30/2012 1.81 Removed Sync Drift function; added Sync Cable
and Sync Counter Reset functions and additional
status codes.

Todd Wilson

03/24/2014 1.82 Added sort ordering, thread priority functions,
corrected typographical errors

Todd Wilson

06/01/2016 2.00 Updated document to cover new aux/sync/clock
model and revised interface.

Todd Wilson

6/22/2017 2.06 Updated to match current Library revision. Todd Wilson

10/11/2017 2.07 Updated to clarify functionality. Todd Wilson

6/19/2018 2.12 Updated to cover the computed data channels
and changes to the callback functions.

Todd Wilson

1/30/2019 2.13 Added the Timestamp Callback function. Todd Wilson

3/12/2019 2.14 Added the Redetect Connected Devices function. Todd Wilson

5/23/2019 2.20 Added the Check Handle function and additional
verbiage around the Polling function. Expanded
the number of concurrent devices from 4 to 32.
Version numbers of both C and .NET libraries now
synchronized.

Todd Wilson

9/10/2019 2.21 Added support for disabling the
unified/combined data mode for multiple plates.

Todd Wilson

2/25/2020 2.35 Added support for polling allocation and clarified
various function results and input parameters.

Todd Wilson

4/15/2020 2.40 Updated documentation with new functions. Todd Wilson

1/22/2021 2.43 Update documentation to cover the pin modes
and the frequency generator.

Todd Wilson

3/23/2021 2.44 Added single device data callback functionality. Todd Wilson

4/14/2021 2.45 Removed the synchronize- and sequence-related
enums from bertec_StatusErrors since they are
no longer emitted.

Todd Wilson

8/3/2022 2.50 Renamed the Data callback functions to
DataStream, and removed the Timestamp
manipulating callbacks. Aggregate Device Mode
now takes an expanded enum value. Added
documentation for the Data Stream Control along
with flow diagrams. Removed the 32 device count
limit.

Todd Wilson
Mohan Baro

