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Abstract

In a significant proportion of individuals, the expected increase of body sway upon eye
closure is not actually observed. This result prefigures different visual contributions to the fine
regulation of body sway. The present paper documents a method to classify healthy subjects
into one visual or non-visual group according to the fractal properties of center of pressure
(COP) profiles. The recognition of the sensory strategy consists of several phases: first, sta-
bilogram diffusion analysis is carried out on the time-series of COP; then, stochastic features
are extracted by two models of different complexity. In particular, a new technique is proposed
which describes with continuity the transition among different scaling regimes. Finally, a linear
classifier is designed. The method gave very high performance classifying, with the best set of
features, provided by the two parameters of the new model, 93.3% of the examined subjects in
agreement with the preclassification, provided by percentage difference of sway between eyes
open and eyes closed conditions and computed over the area of the 95% confidence
ellipse. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The control of human posture is a multisensory process in which the
central nervous system integrates several pieces of afferent information. The
aim of the nervous system is the estimation of body segments’ orientation
relative to each other and to the a priori unknown surrounding environment.
Consequently it properly drives the musculo-skeletal structure in order to
maintain or achieve the desired orientation in space, and hence postural
stability.

In detail, the vestibular system provides information regarding accelera-
tions of the head in space (Horak, Shupert, Dietz, & Horstmann, 1994). The
somatosensory system provides proprioceptive information that can be used
to determine changes in body position (Inglis, Horak, Shupert, & Jones-
Rycewicz, 1994). Furthermore, graviceptors exist in the trunk that can be
used to detect changes in the orientation of the subject with respect to gravity
(Mittelstaedt, 1996). However, of all different sources of information avail-
able, the visual system is of central importance. It senses position and velocity
of the head and has a crucial role in stabilizing posture (Dichgans, Mauritz,
Allum, & Brandt, 1976), providing the most sensitive mean of perceiving
sway during normal standing (Lacour et al., 1997). The functional contri-
bution of all these afferent control loops to detection of position and motion
has been reviewed by Fitzpatrick and McCloskey (1994).

An important aspect, which is still under debate in the literature, concerns
sensory integration: it is well accepted that in normal subjects, feedback in-
formation from different subsystems is redundant but complementary, and
contributes in several ways to body sway stabilization. Nevertheless, the in-
terconnection of the multiple feedback paths involved in postural control is
not yet completely understood. However, the particular integration pattern
that a subject puts into play during quiet standing can be definitely viewed as
a sensory strategy. Hence, as a result of redundancy and plasticity, several
strategies may be found in subjects that can rely on all sensory loops. In
particular, two main classes of subjects were identified in literature on the
basis of differential contribution of static visual cues to the fine regulation of
posture.

A majority of subjects shows an increased sway when tested under eyes-
closed conditions. On the contrary, a second class of subjects, sometimes
referred to as postural blind (Marucchi & Gagey, 1987), sways less when eyes
are closed than when eyes are open. Several authors reported such finding,
both in health (Lacour et al., 1997; Van Parys & Njiokiktjien, 1976; Black,
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Wall, Rockette, & Kitch, 1982) and disease (Black, 1982; Gagey & Toupet,
1991; Lacour et al., 1997). They quantified postural sway by summary sta-
tistic scores extracted from center of pressure (COP) time-series, that is the
location of the resultant of the ground reaction forces produced during
standing. COP is commonly measured by means of a force platform, and is
supposed to reflect some internally generated perturbations and the action of
the overall postural control system (Myklebust, Prieto, & Myklebust, 1995).
A thorough review of such scores can be found in Prieto, Myklebust, Hoff-
mann, Lovett, and Myklebust (1996); unfortunately some limitations occur
since these parameters are univariate descriptors of body sway and do not
aspire to assess the dynamic properties of the COP.

Actually, COP displacements during human standing display a fractal
behavior (Duarte & Zatsiorsky, 2000). This important property, common to
many physiological processes, can be expressed in terms of statistical self-
similarity. Such self-similarity implies that there is a scaling relationship de-
scribing how the measured value of a statistical property depends on the scale
at which it is measured. The simplest scaling relationship determined by self-
similarity has a power law form, leading to a straight line on log-log plots.
An exhaustive tutorial and a wide review of fractal phenomena in physiol-
ogy can be found in the book by Bassingthwaighte, Liebovitch, and West
(1994).

In the analysis of COP experimental data the existence of scaling comes to
light, for example, if the variance of the displacements (i.c., the distances
between consecutive points of the planar COP time-series) is examined over
different timescales. One main implication of fractality is that scaling func-
tions that describe how the values change with the resolution tells more about
the data than the value of the measurement at any one resolution (in par-
ticular, at the higher resolution as it is commonly done by the summary
statistic scores, working with the original sampled time-series). For this
reason, to obtain more significant parameters about the postural control
system, techniques postulating the timescale dependence of COP statistical
properties have been recently proposed in the literature. Collins and De Luca
(1993) were the first who characterized the fractal properties of COP time-
series during quiet stance using a framework of classical and fractional
Brownian motion (Mandelbrot & Van Ness, 1968). In this way, they showed
that COP fluctuations have a structure that is dependent upon the timescale
of observation and not simply random. In particular, they found that the
scaling laws needed to accurately model the phenomenon in the range 0.01-
10 seconds were at least two. They interpreted the results by proposing two



820 L. Chiari et al. | Human Movement Science 19 (2000) 817-842

modes of postural control taking place over different periods of time: open-
loop and feedback.

The work by Collins and De Luca was promising in terms of postural sway
characterization and seminal for following studies. Nevertheless, it is ac-
cepted opinion that this method could be further developed to better address
some technical drawbacks about parameter estimation, and to investigate its
impact on postural control theories (Newell, Slobounov, Slobounova, &
Molenaar, 1997).

In a previous paper, we proposed an improvement in the parameter esti-
mation technique, reducing from six to four the number of parameters
needed to characterize the data set. We assumed a unified theory in which a
two-region multi-scale fractional Brownian motion was identified, and clas-
sical Brownian motion was not required (Chiari, Cappello, Lenzi, & Della
Croce, 2000). Parameter reliability and sensitivity to visual input were con-
sequently improved. In this paper we develop a new technique, aimed at
describing with continuity the transitions among the different scaling regimes
found in COP time-series. This means that the tool that is proposed will not
make a priori assumptions on the number of scaling laws to be identified on
COP data. In this way, any possible transition becomes part of the model,
and the multi-scale fractional Brownian motion (Benassi & Deguy, 1999) has
infinite possible regimes, as can be seen, for example, when estimating the
local scaling properties over small ranges of time intervals (Liebovitch &
Yang, 1997). This approach has the significant advantage of further reducing
the number of parameters.

While stochastic features have already found a significant role in data
analysis (Riley, Wong, Mitra, & Turvey, 1997; Newell et al., 1997) and
starting to be used for physical modeling (Chow, Lauk, & Collins, 1999), the
present study aimed at assessing the capability of the novel parameters in the
pattern recognition of the different visual strategies used by a population of
healthy adults. In this light, what is important for a model is its ability to
properly classify subjects coherently with clinical experience. The idea is that,
hopefully, the more a single model is a good descriptor of different obser-
vations (strategies), the more its parameters could be seen as meaningful
markers of the underlying physiological control process, at least for the as-
pects which are involved in that particular concern.

The way in which visual input affects the postural performance is inves-
tigated through a classification approach that employs: (i) fuzzy clustering, as
a surrogate of a priori knowledge, for the preclassification of visual strate-
gies; (i1) stochastic process modeling of COP trajectories as a valid feature
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extraction scheme; (iil) discriminant analysis through a parametric Bayes
classifier, for testing the sensitivity and comparing the performances of new
stochastic parameters to different patterns observed during the Romberg
test.

2. Materials and methods
2.1. Experimental methods

Experiments were carried out on 60 healthy adults (43 females and 17
males; mean age +std: 37+ 10 years; range: 21-64 years) while standing
upright on a force platform with arms at the side. Subjects were instructed to
look at a small achromatic target (circular, with a diameter of 3 centimeters),
placed at eye height, about 3 meters from the platform, and to stand in a
comfortable stance. Romberg test was performed, i.e. trials were carried out
with both eyes open (eo) and eyes closed (ec). None of the subjects had ev-
idence or known history of neuro-musculo-skeletal disorder. Informed con-
sent was obtained prior to the inclusion in the study.

Each experimental session was composed of four tests, two performed with
the eyes open and two with the eyes closed. The posturographic recordings,
each consisting of a 50-second acquisition, alternated eo and ec conditions.
COP coordinates were measured by a multi-component strain gage force
platform (mod. 4060-08, Bertec Corporation) and sampled at a frequency of
20 Hz. Fig. 1 shows representative 50-second recordings obtained with eyes
open and eyes closed for both classes of subjects. The antero-posterior
component of sway (ycop) is plotted against the corresponding medio-lateral
component (xcop).

All the steps of the classification procedure, including data acquisition,
were managed and designed on a Pentium II PC mounting Matlab 5.3 and its
Data Acquisition Toolbox (The Mathworks). Hypothesis testing was per-
formed by means of NCSS 2000, and the most appropriate statistical tests
were used, according to the properties of the variables under study.

2.2. Fuzzy clustering preclassification

The most common index used to quantify the influence of visual input on
postural performance is the Romberg Quotient (RQ):
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Fig. 1. Typical time courses of the two components of COP: mediolateral (xcop) and anteroposterior
(ycop). Four trials are shown: two with eyes open (eo) — left panels, and two with eyes closed (ec) — right

panels. Upper panels refer to a Visual subject while lower panels refer to a Non-visual subject. Estimated
95% CEA’s are also shown.

__score(ec)
RQ = score(eo)” (1)

where the score can be any valid measure of postural sway (Van Parys &
Njiokiktjien, 1976).

Recently, a new index was proposed which is a nonlinear function of the
former, but is preferable for putting in light the possible presence of bimodal

distributions in data (Lacour et al., 1997). It is the percentage difference of
sway (PDS) and is nothing but the ratio

RQ-1
PDS = £ o7 100 (2)
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A ratio close to zero or negative indicates that the magnitude of body sway is
similar or smaller in the ec than in the eo condition. On the contrary, positive
values reflect a larger sway in the ec than in the eo condition.

The summary statistic score we used to measure postural sway was the
95% confidence ellipse area (CEA), that is the area of the 95% bivariate
confidence ellipse that is expected to enclose approximately 95% of the points
on the COP path (Prieto et al., 1996).

To test the evidence that healthy subjects follow a visual (V) or non-visual
(NV) strategy, we submitted the mean PDS data to a 1-D cluster analysis.
This procedure was used as independent statistical criterion and was per-
formed by the fuzzy clustering algorithm described in the following (Bezdek,
1981).

Fuzzy techniques are very popular in biomedical research since hard la-
beling is often not successful in finding clusters in real world data, where class
membership is not crisp. It is common experience that the boundaries be-
tween classes of real objects are in fact badly delineated, and it seems more
realistic to assign to each pattern x a set of membership values, one for each
group, rather than a single label (Bezdek, 1998). The most widely used ob-

jective function for fuzzy clustering in X = {Xy,Xy,...,X,} is the weighted
within groups sum of squared errors:
J(W7 P) = Z Z(Wi/)mdz(xjvpi) (3)
=1 =1

where w;; is the fuzzy membership of the pattern x; to class i, P =
{P1, P2, - - - s P.} 1s @ matrix of (unknown) cluster centers, m > 1 is the degree of
fuzzification of the clusters (generally m = 2; with m = 1 the algorithm be-
comes the well-known “hard” clustering nearest mean), and d*(x;,p;) is a
squared distance between x; and p;.

By defining the Euclidean metric d?(x;,p;) = (xj — p) (Xj — p;). the
objective function J can be minimized under the following necessary condi-
tions:

1 1/(m=1) c 1 1/(m—1)
Wi = _ - 4
T\ @ n) 2 <d2<xj,pk>> @
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The approximate optimization of J is then obtained recursively:
1. for each pattern x; € X randomly initialize memberships, w;;, such that

c
ng,jgl, lgléc and ZWU: 1, pose WUZWU,
i=1

2. calculate the cluster centers with Eq. (5);
3. compute the new membership values with Eq. (4);
4. if max; |w; — Ww;| < e then stop, otherwise pose W; = w; and iterate

through 2.

The algorithm always converges to a local minimum, generally within a few
iterations Bezdek (1981, p. 80), even if different choices of initial w;; might
lead to different local minima. For this reason it is a common practice to run
the optimization algorithm several times in order to find the best local
minimum of J. Since a definite class assignment is the ultimate goal of
clustering, the outputs of the fuzzy algorithm are finally transformed into
crisp labels. This is called defuzzification and is obtained by the maximum
membership rule (i.e., each pattern is assigned to the cluster with the maxi-
mum membership) (Bezdek, 1998).

One of the most difficult tasks in cluster analysis is to choose the appro-
priate number of clusters. Kaufman and Rousseeuw (1990) defined a set of
values called silhouette coefficients, SC, ranging from —1 to 1, which measure
how well each single pattern has been classified by comparing its dissimilarity
within its cluster to its dissimilarity with its nearest neighbor. In particular,
they proposed to interpret values of SC higher than 0.70 and in the range
0.51-0.70 as markers of a strong and a reasonable structure captured in the
data, respectively.

In fuzzy clustering there are a number of indirect validity indices that can
be used in conjunction with the crisp silhouette values as measures of par-
tition (W) quality. A geometric rationale (good clusters should have compact
representations and wide separations) induced Xie and Beni (1991) to define
an index of fuzzy cluster validity such that the smaller it is, the more separate
are the clusters:

l ijl > W%/dz(xiypi)
n nl;g]?{dz (pk’ pl)}

XB(W,P) = (6)

Good clusters should maximize SC and minimize XB.
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2.3. Stochastic feature extraction

Several simple random walk models can produce fractal time-series with
properties similar to the ones of postural sway. The implicit underlying as-
sumption is that the movement of the COP represents the combined output
of coexistent deterministic and stochastic mechanisms.

The consequent fractal analysis gives the instruments for feature extrac-
tion. First we calculate the variance of the 2-D displacements, A», and de-
termine how the variance diverges with time. For COP time-series this
method is commonly called stabilogram diffusion analysis (Collins & De Luca,
1993).

By definition, in presence of a fractional Brownian motion (Mandelbrot &
Van Ness, 1968), the relation between variance and time interval, V' (At),
should follow a simple exponential scaling law:

V(AL) = (AP) — (Ar) ~ AP (7)

where brackets indicate a time average, Az is the time increment and H is the
scaling exponent. This is also called Hurst exponent (Hurst, 1951) and rep-
resents the rate of correlation decay that characterizes the random process; it
can be any real number between 0 and 1 and the lower it is the more jittery
the process is. In particular, such coefficient provides the following infor-
mation about correlation:
e when H = 0.5 the values of the time-series are uncorrelated with each
other;
e when 0 < H < 0.5 the values of the time-series are said to be “antipersis-
tent” because increases are more likely to be followed by decreases;
e when 0.5 < H < 1 the values of the time-series are said to be ‘“persistent”
because increases are more likely to be followed by increases.
The relation between V(Af) and At is known as the stabilogram diffusion
function (SDF) and can be depicted both in linear and bi-logarithmic scales.
A representative log-log SDF can be seen in Fig. 2. The term <Ar>2 in Eq. (7)
is often negligible so that in place of V(Af) one can also consider the scaling
law on (Ar?) (mean square displacements) with no loss in generality.
Previous studies suggested that even simple models are able to describe the
greatest part of the variance of the SDF (Chiari et al., 2000; Newell et al.,
1997) and, as a corollary, this increases the reliability of the respective pa-
rameters. For this reason, in order to compare the information carried by the
features of models of different complexity, we decided to describe the log-log
SDF also through a new curve, which is still on the furrow of the fractal
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Fig. 2. Representative log-log SDF (solid line). The fitting strategies (dotted lines) and the geometrical
meaning of different stochastic parameters are shown. The arrows denote the effect of an increase of the
specified parameter. Left panel: sigmoid (X) model. Right panel: piecewise linear (PWL) model.

approach by Collins and De Luca, but reflects the continuous changes in
correlation. The framework is formally similar to the fractional Brownian
motion, but exponent H follows a sigmoid law in time interval At:

V(At) = KAPH) (8)
with

B log?2
~log[2(1 + At/At)]

This choice was dictated by the observation that a unique Hurst coefficient
could not be defined for the entire process and a significant transition be-
tween different scaling regimes takes place in data taken from postural sway.
A similar pattern can be seen in Liebovitch and Yang (1997), Fig. 2(d). In
particular, for small time intervals, H (i.e., half the slope of SDF in log-log
scale) approaches 1, while for time intervals commonly greater than 1 sec-
ond, H drastically decreases and it approaches 0 as Ar — oo. Since this
transition from persistent to antipersistent correlation takes place with
continuity, a sigmoid shape was retained a suitable description of the dif-
ferent regimes. On this basis in the following we will refer to this model with
the name .

In this way the features extracted from COP data are only two: K and At..
Parameter K is the variance of the displacements for Az = 1 second, which is
also proportional to the variance of the displacements for large time-lags
(V(At) — 4K as At — oo). Since V(At.) = KAt., K can be thought of as an

H(At) 9)
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estimate of the actual diffusion coefficient of the random process which is
encountered by sampling the time series Ar at a sampling frequency 1/Atz,.
In fact, parameter A¢. is the midpoint of the sigmoid and represents the
time-lag in which H = 0.5, corresponding to a purely random behavior. In
this sense it is an estimate of the time-lag at which the real process switches
from a persistent (positively correlated) to an antipersistent (negatively
correlated) behavior. The approximation of a representative SDF with
model 2 and the relative influence of its parameters on the curve are shown
in Fig. 2.

Fig. 2 also depicts the parameterization descending from Collins and De
Luca piecewise linear (PWL) approach that is here considered for compari-
son (Chiari et al., 2000). In this model the nonlinearity of the SDF (i.e., the
presence of more than one scaling law) was dealt with by isolating the short-
and long-term regions. The geometrical meaning of corresponding parame-
ters is sketched in the right axes of Fig. 2. In fact, 2H,, 2H, are the slopes of
the two best-fitting lines, and Kj, K; are the intercepts for At = 1:

2H;logAt + K, for Ar<r,

log V(At) = 10
gV (A) {2H,logAt+K; for At > 1, (10)

where 7 is a dependent parameter (Chiari et al., 2000):

1
—K,\ -
TZ<K’> " (11)

For both models, a least-squares algorithm was used for parameter estima-
tion from log-log SDF.

2.4. Discriminant analysis

The effectiveness of the preclassification assumption (i.e, two visual strat-
egies exist on the basis of PDS computed on 95% CEA) was tested on the
space of the stochastic parameters and the results of the different models were
compared.

A linear classifier with optimum design (LCOD) assessed class separability
in the space of the features and its performance was evaluated by the leave-
one-out (LOO) empirical error counting technique (Fukunaga, 1990).

The choice of a linear classifier is due to its simplicity and robustness and
leads to a decision rule like
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(]
h(xj):vijJrvozo, i=1,...n, (12)

(005)

indicating that pattern x; (in this case the vector storing stochastic features) is
projected onto vector v and the resulting variable (v'x;) is classified to either
w; or w, depending on whether it is greater or lower than —uv,. The optimum
design procedure consists in selecting parameters v and vy, which give the
smallest classification error in the projected space. The classification error is
estimated through resubstitution and LOO methods.
The classifier parameters (v, vy) are obtained using an iterative procedure
made up of the following steps (adapted from Fukunaga, 1990):
1. Compute the sample mean, M;, and sample covariance matrix, C;, for the
two populations (i = 1,2).
2. Calculate v for a given weight s by v = [sC; + (1 —5)C3] ' (M, — My).
3. Compute y; = v'x; using the v obtained at step 2.
4. Compute the resubstitution error and find the vy which gives the smallest
error.
5. Scan s from 0 to 1 and select the value that gives a minimum LOO error.
In the case of s = 1/2 and vy = 0 the LCOD coincides with the Bayes Linear
Classifier.

3. Results

In the present section we review the main issues addressed by our approach
in the pattern recognition problem of identifying different visual strategies
employed during the Romberg test. The different steps of the classification
process are sketched in Fig. 3 and corresponding results are reported in
sequence.

3.1. Fuzzy clustering preclassification

In the absence of a priori knowledge provided by an expert about the
different kinds of visual integration employed by the subjects under study, a
statistical method was used for preclassification of postural patterns. Com-
putation of CEA and corresponding RQ was performed in each couple of
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Fig. 3. Flow-chart of the pattern recognition system. For acronyms see text.
subsequent eo and ec tests. Hence, a mean PDS was computed for each

subject and evidence that the population was not homogeneous was sug-
gested by the resulting distribution. Moreover, both indices used for the
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Table 1
Cluster validity indices®
c=2 c=3 c=4
SC 0.65 0.50 0.39
XB 0.12 0.32 0.65

#The values of a crisp (SC) and a fuzzy (XB) index assess the partition quality in the case of ¢ = 2,... 4.
The preference for ¢ = 2 is well evident.

choice of the number of clusters suggested to look for a bivariate distribution
in the 1 x 60 vector of PDS(CEA). The results of this cluster design phase are
shown in Table 1 and demonstrate that the maximum of SC and the mini-
mum of XB are both encountered when ¢ = 2. The corresponding value SC
=0.65 indicates that a quite strong structure has been captured in the data.
Consequently, the fuzzy clustering algorithm splits the population into two
well-identified and significantly different clusters. The first group was com-
posed of 19 subjects (31.7%) exhibiting a mean percentage difference of sway
of —12.84+9.0% S.D. (range —33.1% to —0.1%) that is always below zero.
This group, that we will call w;, is not significantly helped by vision for
postural stabilization and hence can be related to a non-visual strategy. The
second group, that we will call w,, included the remaining 41 subjects
(68.3%), who showed a mean of 15.4+9.7% S.D. percentage difference of
sway (range 3.1%-44.3%). These subjects swayed more in the ec conditions
and hence used a visual strategy to control their posture. No significant
difference in sex and age was found in the composition of the two groups.

Fig. 4 shows the histogram distribution of the PDS and depicts the two
groups. A first result of the separation is that the sensitivity of CEA to visual
conditions (eo, ec) measured by a paired T-test is largely increased. In fact,
the two groups show significant differences between eo and ec sway
(P < 0.0001 for both w; and w,) that the whole population can get only to a
minor extent (P < 0.01) due to the partial overlapping of the two strategies.

It is worth noting that the clustering algorithm splits the two groups at
around 0% (corresponding to RQ =100%). In the present population, the
same group composition was obtained by clustering the RQ parameter in
place of PDS.

3.2. Stochastic feature extraction

The first step of the pattern recognition system design dealt with the
problem of extracting a set of features from the available measurements
preserving sufficient discriminant information. This was achieved through the
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Fig. 4. Fuzzy clustering preclassification results. Visual (gray) and Non-visual (black) groups are clearly
separated by a null value of PDS computed over CEA score.

four parameters of PWL and the two parameters of X stochastic models of
SDEF’s, even if different models could be eligible (e.g., Newell et al., 1997) and
were tested for comparison, as will be discussed in the following. Mean values
and standard deviations of the means of the respective features are sum-
marized in Table 2 (PWL model) and Table 3 (X model).

As regards PWL, it is a general observation that the short-term parameters
are always greater than the corresponding long-term parameters, for both

Table 2
Group means and S.D. for the PWL parameters under eyes open (eo) and eyes closed (ec) conditions:
) — non-visual, @, — visual group®

eo ec
o H, 0.80 £ 0.03 0.75+0.05 H
K, [mm?] 1.73+£0.23 1.77+£0.27
H, 0.22£0.07 0.09 £ 0.05 H
K; [mm?] 139 +0.17 1.5240.20 i
w H, 0.78 £ 0.03 0.77 £ 0.04
K, [mm?] 1.64 +£0.24 1.84+0.29 t
H, 0.15+0.05 0.12+0.07 t
K [mm?] 1.34+0.18 1.54 +0.22 H

#The symbols 7 and 71 denote statistically significant differences between visual conditions at P < 0.001
and P < 0.0001 levels, respectively.
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Table 3
Group means and S.D. for the X parameters under eyes open (eo) and eyes closed (ec) conditions:
) — non-visual, w, — visual group®

eo ec
on K [mm?] 31.81+15.49 33.47+21.74
At, [seconds] 0.38+0.24 0.17£0.08 i
o)) K [mm?] 24.29 +£10.79 35.99+16.18 Tt
At, [seconds] 0.254+0.18 0.19£0.10 T

#The symbols t and 1} denote statistically significant differences between visual conditions at P < 0.001
and P < 0.0001 levels, respectively.

groups and both visual conditions. This is a direct consequence of the shape
of the SDF’s, having a steeper ascent in the first part (low time-lags) and a
significant flattening before Az = 1 second. Moreover, all parameters change
in the same direction in both groups due to eyes closure, i.e. H, and H; de-
crease while K, and K; increase. Most of these within-groups, between-visual
conditions changes have a statistical significance, assessed by a paired T-test
and evidenced in Table 1. It is noteworthy that all long-term parameters
change significantly and that w; is mainly characterized by the decrease in H;
and H,; with ec (P < 0.0001) whereas w, is mainly characterized by the in-
crease in K; and K, with ec (P < 0.0001). On the contrary, the only signifi-
cant difference between-groups, within-visual conditions is due to the higher
value of H; with eo in group w; (equal variance two-sample T-test,
P < 0.001).

At the first glance, the parameters of the X model reveal their greater inter-
subject variability with respect to PWL model parameters. In fact, standard
deviations of the means are about 50% of the respective mean values. K and
At. change in the same direction in both groups, due to eyes closure: K in-
creases and At. decreases. The sensitivity to visual conditions within-groups is
high and a main difference is remarkable between w; and w, since in turn A¢,
and K is the major responsible, respectively (Wilcoxon rank-sum,
P < 0.0001). The only difference which is statistically significant between-
groups, within-visual conditions (Mann-Whitney two-sample T'-test,
P < 0.01) concerns Az, with eo.

Though the number of parameters in the ~ model is halved with respect to
PWL model, the goodness of fit is slightly improved. In fact, the mean value
of the RMSE computed over the thorough number of 240 trials changes from
0.15 for PWL to 0.09 for X. Also the change in the proportion of explained
variance is confined within narrow limits.
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3.3. Discriminant analysis

The following step in the development of the pattern recognition system
dealt with the design of the classifier using the previously selected/extracted
features and with the evaluation of the classifier performance using resub-
stitution and cross-validation (e.g., LOO) methods.

As regards the X~ model, maximal separability between groups was en-
countered in the plane ec vs eo of both parameters. Moreover, proportional
relationships seem to exist between the eo and ec values of K and Az, such
that for both groups, a Pearson correlation analysis discloses a significant
collinearity between the eo and ec values of the parameters (> 0.76,
P < 0.001). This suggests that taking into account the Romberg ratios of K
and At. or, for similarity with CEA, their PDS, a further reduction in di-
mensionality can be pursued. Hence, classifier design was carried out on
percentage difference of sway, PDS(.), in three cases (see Table 4), with either
both or one single parameter.

As an example, Fig. 5 shows the LCOD in the plane PDS(K)—
PDS(Atz.). In this case the misclassification probability computed with
LOO (LOO%) was 6.7% (four subjects over 60), while the resubstitution
error, that can be directly estimated from the figure, was 5% (three subjects
over 60). Table 4 reports the performances of the classifiers, built upon
different sets of parameters, and shows that the joint use of K and At has
an added value with respect to their single contribution even if PDS(K)
(LOO% =13.3) is more discriminant than PDS(Az.) (LOO% =30). This
result can be read as further evidence that the two parameters of the
2 model are the prominent features of two different components of the
SDF.

As regards the PWL model, classifier design was carried out on percentage
difference of sway, PDS(.), in seven cases, with ecither all or all possible
couples of parameters. Table 4 reports the misclassification error obtained

Table 4
Evaluation of the classifier for different sets of stochastic features
Model Features LOO%
P PDS(K), PDS(At.) 6.7
PDS(K) 13.3
PDS(At,) 30
PWL PDS(H,), PDS(K,), PDS(H,), PDS(K) 16.6

PDS(H;), PDS(K)) 11.6
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Fig. 5. The linear classifier in the plane of the ~ model parameters. Visual (x) and Non-visual (o) subjects
are shown. Three misclassified subjects can be directly seen (resubstitution error).

with all four PDS’s (LOO% = 16.6) and the lowest error obtained within the
six possible combinations of parameters two by two (LOO%=11.6). It
should be mentioned that this minimum was achieved with the long-term
parameters H; and K,;, while the worst performance (LOO% =26.6)
was accomplished by the pair of intercepts K; and K;. In this model the
reduction of features gives rise to an advantage in term of misclassification
error.

In summary, if we take the best results provided by either ~ or PWL
model, the proposed method featuring the stochastic properties of the COP,
gives very high performance in terms of pattern recognition capability.
Nevertheless, if we compare the performances obtained in this task with the
same number of features, the LOO% of X model is almost half the corre-
sponding error ensured by PWL model. Hence, 2~ model should be preferred
for the classification of visual strategy.

If one looks separately at the single couples of consecutive eo and ec
experiments, even in a repeated measurement setting, a certain amount of
intra-subject variability can be noticed in the values of PDS(K) and
PDS(Atz,). Anyway, it seems not to affect the performance of the classifier.
The consistency in time of the postural strategy together with the role of
adaptation are now being investigated and will be object of a further
study.
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4. Discussion

Multivariate methods, such as statistical pattern recognition and discri-
minant analysis, in the past have proven to be useful instruments in man-
aging and extracting information from the huge number of measurements
acquired in movement analysis. These techniques have been utilized in the
field of movement analysis to identify the most significant variables in dif-
ferent pathologies, and to design classification rules and quantitative evalu-
ation scores. Gait patterns of patients with hip diseases (Yamamoto et al.,
1983) and cerebral palsy (Kadaba et al., 1995) were assessed using principal
component analysis. The extraction of functional scores allowed the patho-
logical patterns to be discriminated from the normal ones. Stepwise discri-
minant analysis was used to classify normal and total knee replacement
subjects and to develop knee and hip performance scores (Laughman,
Stauffer, Ilstrup, & Chao, 1984; Chao, Kaufman, Cahalan, & Askew, 1988).
Quantitative gait analysis and statistical pattern recognition were also used
together as clinical decision-making aids in flat foot diagnosis and post-
surgery monitoring (Bertani, Cappello, Benedetti, Simoncini, & Catani,
1999). Up to now few studies dealt with the pattern recognition of postural
measurements. Nevertheless (i) the main contribution of vision on postural
sway stabilization, and (ii) the relevant inter-individual differences in the
results of the visual experiments were the object of several studies in the last
decades.

(1) On one side, Kunkel, Freudenthaler, Steinhoff, Baudewig, and Paulus
(1998) observed that, during visual stimulation with different spatial fre-
quencies, sway velocity was reduced more efficiently by stabilizing visual
frames than was root-mean-square (RMS) sway. Maki, Holliday, and Fernie
(1987) explained the effect of visual deprivation on postural performances
taking into account the stiffened control strategy, i.e. subjects might over-
compensate for the loss of visual input by increasing the stiffness of the
control system and hence the mean velocity of the sway. Since sway velocity
is suggested to embody the dynamic muscle forces acting at the joints, it was
argued that visual information can be used to reduce and therefore optimize
dynamic muscle action even though static body sway is either not or less
reduced.

We tested this hypothesis on the two groups of subjects that were identified
according to the present classification scheme. Interestingly, we observed that
PDS computed for RMS sway was significantly different (P < 0.001) between
the non-visual (w;) and the visual (w,) groups. In particular, it was positive
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for w,, meaning a greater RMS sway with ec than with eo, and negative for
w;. This is not surprising since RMS sway and CEA are strongly correlated
(Prieto et al., 1996). On the contrary, PDS computed for sway velocity was
similar for w; and w, and always positive, to indicate a stabilizing effect of
vision on dynamic muscle action, common to all subjects, irrespective of path
traveled, that may depend on other factors, e.g. a different recruitment
strategy among antigravitary muscles.

This is, to a certain extent, also in accordance with the results of Ishida and
Imai (1980) that demonstrated increases in reflex gain when vision is de-
prived. In conclusion, one could think at the existence of a single response to
the absence of visual input (i.e., similar mean velocities), in terms of stiffen-
ing, but this still does not mean that different choices can be made about the
muscles to be stiffened or the timing (or spatial threshold) of the central
controller (i.e., why RMS sway and CEA are different in the two groups?).

(i) Several recent publications investigated the different patterns that could
be encountered when visual expropriospecific information is challenged
during posture. Casselbrant, Redfern, Furman, Fall, and Mandel (1998)
studied the effect of a moving visual surrounding on the sway of children with
otitis media and suggested that these subjects may be more visually depen-
dent for balance than healthy age-matched controls. Jeka, Oie, and Kiemel
(2000), testing healthy subjects under visual and somatosensory stimulation,
observed three qualitatively distinct types of sensory integration, one of
which was defined vision dominant for the prevalence of visual information
with respect to other sensory modalities. Isableu, Ohlmann, Cremieux, and
Amblard (1997), analyzing the different postural performances of subjects
improving their balance with the aid of visual cues and other not doing so,
assumed that the responsible for this discrepancy were the processes involved
in selecting and/or controlling the spatial frame of reference. The well-known
inter-individual differences described in the perception of verticality, and
particularly in the perceived orientation of the body in space, could explain
the postural variability.

Spontaneous sway studies have also shown that eye closure results in in-
creased sway in most but not all healthy subjects. Different proportions of
these visual healthy subjects were identified up to now in literature, ranging
from 54% (Lacour et al., 1997) to 90% (Black et al., 1982). Indeed, several
additional factors can affect this variability including the recording condi-
tions (e.g., the different role that adaptation can play over different experi-
mental designs), the experimental setup (e.g., the distance from the visual
target and its shape), the scores employed to quantify sway. This latter aspect
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should be carefully considered since different scores could describe different
aspects of the postural performance.

Collins and De Luca (1995) identified two visual strategies, sharing the
muscular stiffness decrease as the main effect of visual integration, on the
basis of the characteristics of SDF’s. They substantially differentiated sub-
jects according to the RQ of the planar long-term effective diffusion coeffi-
cient and the resulting groups can be associated to our groups since the
qualitative properties of the respective SDF are very similar. Hence, they
argued that, for visual subjects, visual input reduces the stiffness by
decreasing the level of muscular activity across the joints. On the contrary,
non-visual subjects’ sway seems to reflect a reweighing of the sensory loops
(visual, vestibular, proprioceptive) in postural control.

The discriminant analysis carried out in the present paper on the PWL
parameters confirms the observation made by Collins and De Luca (even if
they did not support it by an analytical pattern recognition approach) that
the long-term stochastic parameters play a major role in discriminating the
visual and non-visual subjects (see Table 4). Similar conclusions concern H;,
decreasing significantly in both groups when eyes are closed, but not H; that
here is significantly increased by visual input in group w;.

As concerns the new model, the two parameters seem to suggest that the
opposite trend in the size of body sway observed upon eye closure, could be
explained by a different modulation of their interplay. In fact, both K and Az,
have changes of the same sign when eyes get closed, but such changes have
different levels of significance. In particular, the visual feedback contributes
to a general reduction in K, a diffusion coefficient that may be thought in part
as a measure of muscle stiffness. In this respect, the correlation found be-
tween K and mean velocity (Spearman rank correlation coefficient » = 0.86),
is noteworthy.

The increase in At¢. observed in the eo condition is instead symptom of a
later transition between persistent and antipersistent behavior due to the
visual feedback. This may reflect (see Fig. 2) an increase in the difference in
variance (power) between the bands below and above 1 Hz, with an increase
over the low frequencies. This result is consistent with the spectral contri-
bution of the visual afference to postural control, which was located at about
0.2 Hz (Yoshizawa, Takeda, Ozawa, & Sasaki, 1992).

Stabilogram diffusion plots, representative of the two populations, are
shown in Fig. 6. Once more, they emphasize the fact that w; and w, have
pretty similar SDF with ec, and the greatest part of the between-group dif-
ference can be inferred by looking at the SDF with eo. In this condition the
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Fig. 6. Representative SDF for the Non-visual (w;) and Visual (w,) subjects. The comparison is proposed
between the eo (solid line) and ec conditions (dotted line).

SDF of w; are stretched upward (K is commonly higher than in w,) and less
flat for high lags (due to the larger values of At.). This result shows that in the
non-visual group (w;) the difference between eo and ec is really marginal, so
that at a first glance the outcome of the postural control system seems
completely insensitive to the visual feedback. As a matter of fact the muscle
stiffness with eo is very high in this case, but the transition time very delayed.
For this reason it would be probably inefficient to control posture by further
increasing stiffness upon eye closure, and the role of maintaining oscillations
in an acceptable range could be demanded to an advance in the transition
between persistence and antipersistence. Many factors could contribute to
this aim, including changes in physical parameters such as inertial movement
and bounding (Liebovitch & Yang, 1997). This action determines a signifi-
cant reduction in the stochastic activity for high lags, and hence a more
accurate control when eyes are closed than when eyes are open. On the
contrary, the visual group (w,) shows the expected increase in muscle stiffness
upon eye closure, which contributes the greatest part of the control. Only a
residual role is played here by a less prominent advance in the transition.

It should be remarked that the values of A¢, which are estimated with the
new technique are significantly lower than the values of 7 in the PWL model
(they can be computed with Eq. (11) and are around 0.9 seconds) and the
values reported by Collins and De Luca (1995). Nevertheless, they are con-
sistent with experimental observations in motor control feedback studies, and
are comparable with the transition times recently estimated by Rougier
(1999) with an automatic technique aimed at determining the two successive
portions of the SDF.

But which is the link between the new parameters, K and At,., and the
parameters of the PWL model? It can be verified, by expanding Eq. (8)
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around Az, &+ ¢, with ¢ small but finite, that the ratios H,/H, and K,/K, are
uniquely identified once At. is given. In other words, Az, summarizes all the
information concerning the “change in scaling” from short to long latencies.

As regards K, it is obviously related to the values of K, and K, of the PWL
model (Spearman rank correlation coefficients: » = 0.88 and r=0.78,
respectively; P < 0.0001).

PDS(K) and PDS(A¢.) are significantly different in the two populations
(P < 0.001) and on the average their absolute values are greater in w, than in
w; for K, and greater in w; (more negative) than in w, for A¢.. The high
values of At. estimated in w; when eyes are open, suggest a greater variance
on the large time-lags and hence the presence of a more significant low-fre-
quency component in the sway. This could reflect a different kind of explo-
ration of the base of support requiring longer times to be stabilized.

A final remark concerns the comparison with other models proposed in the
literature, and in particular with the model used by Newell et al. (1997),
which has the same number of parameters as the new one. The two pa-
rameters of the linear Ornstein—Uhlenbeck (OU) process, namely a diffusion
and a drift coefficient, were estimated and matched with the best set of fea-
tures provided by the new model (K, Az,). To compare these different models,
a measure of their “goodness” is required. A logical approach is to evaluate
both their ability to fit the experimental SDF, and the expected accuracy of
the parameter estimates. Moreover, the performance of the classifiers built
upon the two sets of features can be checked. The former aspects were as-
sessed by the: (i) RMSE — the new method better fits the SDF (0.09 vs 0.12),
and (ii) mean radius of the circle equivalent to the indifference ellipse in the
parameter space — this radius represents the mean relative error and is ex-
pressed as a percentage; the parameters of the new method are more accurate
(7.1% vs 8.4%). Finally, classifiers based on the PDS of the two sets of fea-
tures were evaluated by the LOO error. Once again model 2 performed better
than the OU model (LOO 6.6% vs 8.3%). Hence, the new method parallels
(or slightly improves) the results provided by the OU with the same number
of features.

5. Conclusions
Many studies in patients with a variety of disorders affecting the afferent

pathways (i.c., visual, vestibular, somatosensory) suggest that posturography
might be a useful clinical tool for evaluating balance problems. But whether
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static posturography is sensitive enough to enlighten on the performances
and the different strategies of the postural control system in normal condi-
tions is still an open question. For this reason a new method that seems
appropriate to describe the fractal properties of the COP was developed and
tested. The new model of the stochastic process is based on the assumption
that different scaling laws can be identified on the basis of time-scale de-
pendent parameters.

The purpose of this study was to evaluate the sensitivity of such a model to
the visual strategies put into play in a population of healthy subjects and to
compare its performances with stochastic models previously proposed in
literature. New parameters were compared with the previous ones, in terms
of visual strategy pattern recognition and sensitivity to operating conditions
during the classic Romberg test. The overall framework that was designed
seemed robust and reliable for classification mainly due to the new feature
extraction scheme based on data modeling of the COP time-series.

Obtained results seem encouraging of the possibility of achieving discri-
minant information about postural ability from the COP time-series itself.
Nevertheless, further insight on the physiological meaning of the new pa-
rameters will help in improving both their experimental impact and analytical
aspects.
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