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Abstract—This study addresses the challenge of identifying the features of the
Centre of pressure (COP) trajectory that are most sensitive to postural performance,
with the aim of avoiding redundancy and allowing a straightforward interpretation of
the results. Postural sway in 50 young, healthy subjects was measured by a force
platform. Thirty-seven stabilometric parameters were computed from the one-
dimensional and two-dimensional COP time series. After normalisation to the relevant
biomechanical factors, by means of multiple regression models, a feature selection
process was performed based on principal component analysis. Results suggest that
COP two-dimensional time series can be primarily characterised by four parameters,
describing the size of the COP path over the support surface; the principal sway
direction; and the shape and bandwidth of the power spectral density plot. COP
one-dimensional time series (antero-posterior (AP) and medio-lateral (ML)) can be
characterised by six parameters describing COP dispersion along the AP direction;
mean velocity along the ML and AP directions; the contrast between ML and AP
regulatory activity; and two parameters describing the spectral characteristics of the
COP along the AP direction. On the basis of the results obtained, some guidelines
are suggested for the choice of stabilometric parameters to use, with the aim of
promoting standardisation in quantitative posturography.

Keywords—Posture, Stabilometric parameters, Feature selection, Principal component
analysis, Normalisation

Med. Biol. Eng. Comput., 2004, 42, 71–79
1 Introduction

BODY POSTURE is the output of complex interactions between
central nervous system control mechanisms (visual, vestibular
and somatosensory systems, integration of afferent information,
generation of motor output) and the musculo-skeletal actuators
acting against the support surface. Because of its complexity,
body posture is challenging to measure with simple methods,
and yet simple methods, both in terms of time expenditure and
data interpretation, are needed in neurological, orthopaedic and
geriatric clinical practice, where balance impairments are
commonly reported (HUFSCHMIDT et al., 1980; DIENER et al.,
1984; MAKI et al., 1994). Stabilometry, i.e. the measurement of
forces exerted against the ground from a force platform during
quiet stance, is commonly used to quantify postural steadiness
both in research and in the clinic.

Typically, stabilometry focuses on the properties of the centre
of pressure (COP) time series, representing the point location of
the ground reaction force vector as it evolves on the horizontal
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plane (2D) or along two orthogonal axes, fixed with the platform
(antero-posterior (AP) and medio-lateral (ML)) (KAPTEYN et al.,
1983). This single variable reflects both the balance controlling
process and movements of the centre of mass of the entire body
and thus provides a single global measure of posture control.
However, COP analysis produces a potentially large dataset
(stabilometric parameters) that can be difficult to manage.

The stabilometric parameters that are most commonly
reported in the literature are those that describe the statistical
properties of the COP trajectory, considered as a stationary
signal, in the time and frequency domains (PRIETO et al.,
1996). Under this assumption, the number of stabilometric
parameters that can be extracted from the COP is large, and
many of the parameters are redundant, complicating interpreta-
tion of the dataset (NEWELL et al., 1997).

The way to turn data into information is a common problem in
the human movement analysis community (KAUFMAN and
SUTHERLAND, 1996). In particular, to date, stabilometry
undoubtedly suffers from several limiting factors including

(i) the absence of a definite ‘normal pattern’
(ii) the lack of standardisation in the measurement protocols
(iii) the large number of highly coupled variables that are

computed from the force platform recordings.

The present study moves from this latter evidence and
addresses the open challenge of developing guidelines to
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identify the most relevant COP measures for quantifying
postural steadiness. The number of COP-based parameters
selected should be small enough to reduce computation, avoid
redundancy and enable clear interpretation of the results, and yet
large enough to quantify different aspects of postural control.
The ideal parameters recommended by the guidelines should
be uninfluenced by spurious sources of within- (e.g. non-
stationarity, fatigue) and between-subject variability (e.g. anthro-
pometry) that can abnormally inflate the signal components of
the COP. At the same time, the parameters must be sufficiently
sensitive to identify real and meaningful differences in posture
control between subject groups.

A few efforts have been made, to date, in the direction of
selecting a subset of variables computed from stabilometric
recordings. In particular, some authors implemented dimension
reduction procedures based on mono-dimensional statistical
methods and sensitivity to visual condition and different
subject groups (PRIETO et al., 1996; BARATTO et al., 2002).

The major aim of the present study was to design a multi-
dimensional feature selection procedure for stabilometric para-
meters based on principal component analysis (PCA). The central
idea of PCA is to reduce the dimensionality of a dataset of several
interrelated measures (JOLLIFFE, 1986), here, the parameters
computed from the COP trajectory. This reduction is achieved
by transforming the parameters to a new set of variables (the
principal components), so that the first few retain most of
the variation (assumed to represent information) present in the
original dataset. Indeed, it can be proven that the representation
givenbyPCA is anoptimum linear dimension reduction technique
in the mean-square sense (JOLLIFFE, 1986). In addition, PCA
facilitates the interpretation of the results because it extracts
features that are directly related to the original data set.

In this regard, in the present work, to make the procedure also
appropriate for clinical purposes, where traditional COP-based
parameters are routinely used, we preferred to select a subset of
the original dataset, rather than introduce new measures. To this
aim, the principal components (PCs) were used to suggest
suitable selections from the whole set of 37 parameters
(JOLLIFFE, 1986). This was achieved by investigating separately
the variability of the parameters computed from 2D and AP–ML
representations.

2 Methods

2.1 Experimental session

Postural sway was measured on 50 healthy young adults (25
males and 25 females) without musculoskeletal or neurological
disorders. The subjects’ mean age was 25.7 years (SD 2.8, range
21–30 years). The experimental set-up consisted of two 50 s
trials for each subject. Subjects stood on a strain-gauge force
platform*, with eyes open, looking towards an achromatic target
(a 5 cm diameter circle) 2m away. To avoid any kind of learning
or fatigue effect (TARANTOLA et al., 1997), only the first trial was
retained in the analysis.

The three force and three moment components were recorded
from the force plate at 200Hz. Subsequently, data were filtered
at 8Hz by a 30th -order low-pass FIR filter with zero-phase
and down-sampled at 20Hz. From the output signals of the
platform, the two COP co-ordinates were computed in the AP
and ML directions. Next, the 2D description of the migration of
the whole-body COP was obtained by representing the AP as a
function of the ML time series, and by computing the distances
between each point in the (ML, AP) plane and the mean COP.
We also recorded anthropometric and base of support measures

*Model 4060-08, Bertec Corporation, Columbus, Ohio, USA
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for each subject. These measures were later used to evaluate and
then remove the influences of biomechanical factors on para-
meters extracted from the COP data (see Section 2.3).

2.2 Stabilometric parameters

Fifteen different parameters were computed from the COP
course. Eleven of these were computed from each of the 1D (AP
and ML) and 2D time series. These 11 parameters typically
quantify the major properties of the COP time series in the
time and frequency domains. The remaining four parameters
were extracted from the 2D time series only, because they
describe planar characteristics, such as the area covered by the
COP and the principal sway direction (OLIVEIRA et al., 1996).
Thus we computed a total of 37 measures from the COP data.
These measures are usually referred to as summary statistic
scores (PRIETO et al., 1996).

Summary statistic scores are frequently applied in clinical
practice, being easy to compute and relatively straightforward to
interpret (HUFSCHMIDT et al., 1980; DIENER et al., 1984). A full
list and a brief description of the parameters computed in the
present study are reported in Table 1.

2.3 Parameter normalisation

Aprevious work (CHIARI et al., 2002), using robust regression
analysis, revealed the dependence of most COP stabilometric
parameters on biomechanical factors. This dependence can
cause data misinterpretation when between-subject comparisons
are performed. In particular, it was shown that the following set
of biomechanical factors should be taken into account: height,
weight, base of support area, maximum foot width and feet-
opening angle. These were able to explain more than 80% of the
variance in the overall set of 17 considered anthropometric and
foot placement measurements (CHIARI et al., 2002).

In the present work, the assessment of biomechanical influ-
ences on the parameters was performed by multiple regression
analysis. In this phase we determined which of the five
biomechanical factors were correlated with variations in each
stabilometric parameter. To uncover this optimum subset, an
iterative algorithm was applied (HINTZE, 2000). This algorithm
fits all possible regression models and suggests the optimum
solution(s) in terms of a balance between simplicity (as few
regressors as possible) and fit (as many regressors as needed).
After the optimum regression model was determined for each
stabilometric parameter, the latter was normalised first by
subtraction of the value predicted by the model and then addition
of the mean value of the parameter across subjects to return the
value of the normalised parameter to the original range
(O’MALLEY, 1996; CHIARI et al., 2002).

2.4 Principal component analysis for feature extraction

The PCA procedure was applied to stabilometric parameters
after normalisation. The correlation matrix (instead of the
covariance matrix) was used to estimate the PCs, because the
parameters were very different in value and variance (JOLLIFFE,
1986). Parameters characterising the COP trajectory on the
horizontal plane (2D parameters) were treated separately from
those computed from the 1D time series (AP–ML parameters),
under the assumption that the two groups share most of the
information.

Several methods have been proposed for determining the
number of PCs that should be kept for further analysis, such as
dropping PCs whose eigenvalues are less than one (KAISER,
1960; JOLLIFFE, 1972) or retaining just enough PCs to account
for a pre-set percentage of the data variation (JOLLIFFE, 1986). In
the present study, we adopted the last criterion and chose the
edical & Biological Engineering & Computing 2004, Vol. 42
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Table 1 Stabilometric parameters: acronyms and brief descriptions

Acronym Description

Parameters computed from 2D, AP and ML COP displacements
MD mean distance from centre of COP trajectory, mm
RMS root mean square of COP time series, mm
SP sway path, total COP trajectory length, mm
RANGE range of COP displacement, mm
MV mean velocity (SP=T*), mm s�1

MF mean frequency, i.e. number, per second, of loops that have to be run by COP,
to cover total trajectory equal to SP (MF¼ SP=(2p �MD � T*)), Hz

TP total power, mm2

f50 median frequency, frequency below which 50% of TP is present, Hz
f95 95% power frequency, frequency below which 95% of TP is present, Hz
CF centroidal frequency, frequency at which spectral mass is concentrated, Hz
FD frequency dispersion, unitless measure of variability of frequency content of

power spectral density (zero for pure sinusoid, increases with spectral
bandwidth to one)

Parameters computed from 2D COP displacements only
j90-MDirj angular deviation from AP sway, deg�1

CCA area of 95% confidence circumference, mm2

CEA area of 95% confidence ellipse, mm2

SA sway area, computed as area included in COP displacement per unit of time,
mm2 s�1

*T duration of trial, s
number of PCs that accounted for at least 90% of the total
variance. The number m of PCs considered defines the dimen-
sion of the reduced dataset.

After the PCA was completed, we performed a procedure
aimed at making the m PCs more meaningful for interpretation.
This operation was not easy, because a linear combination of
original variables may not have a clear interpretation.
Nevertheless, we tried to provide an intuitive meaning to each
of the m PCs.

The first m PCs defined a new co-ordinate system, and each
trial was identified by new co-ordinates in this m-dimension
space (feature extraction process). Along each direction (i.e.
PC), the two trials whose co-ordinates were the minimum and
maximum were considered for qualitative interpretation of the
corresponding PC, by means of consideration of the relevant
features of their COP in the time and frequency domains.

2.5 From feature extraction to feature selection

As we did not wish to introduce new, possibly misleading,
variables, we then sought a subset of m original variables, with
the aid of the features extracted so far. Among several possible
criteria (MCCABE, 1984; JOLLIFFE, 1986), we chose the one that
associated one stabilometric parameter with each of the m PCs,
on the basis of the higher correlation with the PC itself. This
approach is suggested when there are groups of highly correlated
variables, such as stabilometric parameters (PRIETO et al., 1996),
so that just one variable is selected from each group.

3 Results

3.1 Multiple regression and parameter normalisation

Results of multiple regressions are presented in Table 2. Not
all the parameters are equally correlated with the biomechanical
factors. For parameters that are weakly correlated, the normal-
isation does not have a strong effect. We highlight in the Table,
and discuss in the following, only those stabilometric parameters
that were heavily influenced by the biomechanical regressors
(r240.2).

The stabilometric parameters are usually dependent on either
height or weight. These two anthropometric measurements are
ngineering & Computing 2004, Vol. 42
never co-present, because their joint occurrence represents a sort
of redundancy. All the ML parameters (except mean velocity)
are dependent on the base of support area, whereas the AP
parameters are dependent on maximum foot width. The biome-
chanical factors that affect ML and AP parameters also influence
the corresponding 2D parameters. Thus most of the 2D para-
meters show dependence on both base of support area and on
maximum foot width. The feet-opening angle only affects
frequency-domain parameters from ML time series.

3.2 PCA and feature selection applied to 2D parameters

The minimum number of PCs that can explain at least 90% of
the total variation in the 2D stabilometric parameters is four. The
first four PCs account for 90.95% of the total variation of the
original 14-dimension dataset. The 2D parameters are actually
15 in number (see Table 1), but parameter SPwas not included in
the PCA, being directly proportional toMV. Table 3 lists the PC
coefficients (i.e. eigenvectors of the correlation matrix).

Table 2 Multiple regression of stabilometric parameters
against biomechanical factors. Only regressions with
r240.2 are reported. MFW-maximum foot width; BOS-
base of support area; a-feet-opening angle

Parameter (r2) Regressors

MD (0.21) weight MFW BOS
RANGE (0.26) weight MFW BOS
MV (0.23) height MFW
f95 (0.23) height MFW BOS
MDML (0.27) weight BOS
RMSML (0.27) weight BOS
RANGEML (0.33) weight BOS
MVML (0.26) height MFW
TPML (0.32) height BOS
f50ML (0.37) weight BOS a
f50AP (0.34) height MFW
CFAP (0.29) height MFW
CFML (0.30) BOS a
FDML (0.24) MFW BOS a
SA (0.32) weight MFW BOS
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Table 3 2D parameters: PC coefficients and correlation coefficients between parameters and the
corresponding PC. Only values of jrj40.4 are shown, in brackets

PC1 PC2 PC3 PC4

Cumulative %
explained variance 53.58% 74.00% 84.32% 90.95%

MD 0.35 (0.97) �0.05 �0.11 �0.02
RMS 0.35 (0.97) �0.04 �0.10 �0.06
RANGE 0.35 (0.7) �0.08 0.07 �0.05
MV 0.17 (0.48) �0.37 (�0.63) 0.38 (0.46) �0.05
MF �0.23 (�0.63) �0.23 0.49 (0.59) �0.09
TP 0.32 (0.88) �0.05 0.22 0.01
f50 �0.08 �0.52 (�0.87) �0.23 0.24
f95 �0.21 (�0.59) �0.38 (�0.64) 0.04 �0.41
CF �0.20 �0.43 (�0.73) �0.06 �0.26
FD �0.02 0.39 (0.66) 0.38 (0.46) �0.57 (�0.55)
j90-MDirj �0.06 0.02 0.56 (0.67) 0.59 (0.57)
CCA 0.34 (0.93) �0.05 �0.05 �0.12
CEA 0.35 (0.96) �0.08 0.02 �0.03
SA 0.32 (0.87) �0.21 0.16 �0.05
In the following, qualitative interpretations of PCs are
presented, based on both the signs and values of PC coefficients
and on COP characteristics of the subjects identified by
co-ordinates at the extremes along each PC direction (Fig. 1).
In addition, we present the results of the feature selection method
that identifies a subset of the original 2D stabilometric para-
meters, needed to describe different components of the COP
pattern (JOLLIFFE, 1986) and explaining almost the same amount
of information as the four selected PCs. In this light, Table 3
reports the correlation coefficients r between each PC and the
parameters, which helped to carry out the feature selection process.

PC1 describes the size of the COP oscillation and, in fact, it is
determined mainly by parameters describing the amount of
sway. Fig. 1a illustrates this interpretation, showing the main
differences between subjects at the opposite boundaries of PC1.
In particular PC1 is highly correlated (r40.93) with a group of
five parameters that all describe the size of the COP travelled
path in the horizontal plane: RMS,MD, RANGE, CEA and CCA
(see Table 1 for acronym definitions). Thus, on this basis, any
one of these measures could be chosen as a representative
parameter.

PC2 describes relevant spectral properties, reflecting mainly
the position of the power spectral density (PSD) plot, as proved
by the most influential parameters in this PC. Fig. 1b shows the
M

PSD of COP trajectories of the extreme subjects along this PC,
with evident spectral differences. PC2 is highly correlated with
two measures in the frequency domain: f50 (r¼�0.87) and CF
(r¼�0.73); one of themmay be considered as a selected feature
from this PC.

PC3 is easily interpretable, identifying the principal direction
of sway (AP or ML) in the horizontal plane, being mostly
determined by j90�MDirj (displacement of the main direction
of the COP trajectory away from the AP axes). Fig. 1c confirms
that the characteristic that most distinguishes the COP trajec-
tories is the sway direction (primarily ML for the subject
represented in the upper panel and AP for the subject represented
in the bottom panel). As expected from this qualitative inter-
pretation of PC3, j90�MDirj is the parameter most correlated
with PC3 (r¼ 0.67), and it is the representative parameter for
this PC.

PC4 is difficult to interpret, because it is strongly and
oppositely determined by two parameters: j90�MDirj and
frequency dispersion FD. This means that the variability
associated with this PC explains cases of sway direction
moving towards ML combined with decreasing FD. PC4 is
most correlated with j90�MDirj (r¼ 0.57) and FD
(r¼�0.55). Nevertheless, FD should be preferred to represent
this component of the COP, as j90�MDirj has already been
Fig. 1 COP trajectories and power spectral density (PSD) of two subjects for each PC explaining 90.95% of variation of 2D stabilometric
parameters. Two subjects are identified by highest (Max, upper panel) and lowest (Min, bottom panel) co-ordinate values along
corresponding PC (a) PC1; (b) PC2; (c) PC3; (d) PC4
edical & Biological Engineering & Computing 2004, Vol. 42



addressed within PC3. Hence we can conclude that PC4 defines
the shape of the PSD, as can be seen in the comparison between
PSD plots in Fig. 1d.

3.3 PCA and feature selection applied to
AP–ML parameters

Six PCs are required to explain 90% of the total variation of
the original variables represented by the AP–ML parameters.
The six PCs account for 90.02% of the total variation of the
original 20-dimension dataset. Parameters computed from AP–
ML time series are actually 22 in number (see Table 1), but
parameters SPAP and SPML were not included in the PCA, being
directly proportional to MVAP and MVML, respectively. PC
coefficients are shown in Table 4.

Considering both the signs and values of the PC coefficients
and the COP trajectories identified by co-ordinates at the
extremes along each PC direction, interpretation of the six PCs
follows, with the output of the feature selection procedure that
identifies a subset of the AP–ML original stabilometric para-
meters performed using the correlation coefficients r, listed in
Table 4.

PC1 is primarily a descriptor of dispersion in the AP direction,
as is well illustrated in Fig. 2a and highlighted by coefficients in
the first column of Table 4, which principally weigh the AP
component of distance parameters. PC1 correlates almost
equally with four parameters (r ranges from �0.73 to �0.77):
RANGEAP, TPAP, RMSAP and MDAP. They all describe the
amount of COP migration along the AP direction, and one of
them should be considered as a descriptor of this PC.

PC2 highlights postural activity that occurs principally in
the ML direction, as shown in Fig. 2b by the comparison
between ML COPs of subjects at the opposite boundaries along
this PC. ML mean velocity and ML frequency parameters show
the highest PC coefficients.MVML is the parametermost correlated
with PC2 (r¼�0.86), followed by MVAP (r¼�0.7). Among the
12 parameters having jrj40.4 (see Table 4), nine are from the ML
time series, denoting the importance of this component for PC2.

PC3 distinguishes between subjects with a predominance of
ML activity and subjects with a predominance of AP activity.
The upper panel of Fig. 2c shows a trial where postural activity
Medical & Biological Engineering & Computing 2004, Vol. 42
is principally along the ML direction, whereas, in the bottom
panel, it is the AP direction that is dominant. This is confirmed
by the coefficients in the third column of Table 4; observe that
their signs are opposite for the AP and ML parameters.
Regarding r-values, the parameters principally involved in
the identification of PC3 are the ones describing the amount
of sway in the AP direction, followed by the ones in the ML
direction, with opposite signs of r for the AP and ML
parameters. Even if the AP parameters are more correlated
with PC3, probably owing to biomechanical properties, one of
them has already been suggested from PC1, and so it seems
preferable to select a parameter describing dispersion along
the ML direction, to avoid loosing the information provided
by PC3.

PC4, PC5 and PC6 highlight the spectral characteristics of the
COP, especially in the AP direction, as evidenced by the
coefficients in Table 4 and by the plots in Figs. 2d–f. Details
follow.

PC4 distinguishes traces with power concentrated at low
frequencies (here below 0.5Hz, as shown in the top panel of
Fig. 2d) and traces with power more spread through the
bandwidth. It is not surprising that the highest coefficient
found in the fourth column of Table 4 is that corresponding to
CFAP (centroidal frequency of COP sway in the AP direction).
PC4 is mostly correlated to AP frequency parameters and
principally with CFAP (r¼�0.67), followed by f50AP
(r¼�0.63) and f95AP (r¼�0.60). One of them may be
considered as the parameter characterising PC4.

PC5 is particularly related to FDAP (see Table 4, fifth column),
which measures how far the signal is from a pure sinusoid. By
looking at Fig. 2e, it is possible to note that the PSD plot
represented in the top panel presents an evident peak at around
0.3Hz, whereas there is no evident peak in the bottom panel
(with the exception of high power at very low frequency, related
to a continuous component). Hence, PC5 seems sensitive to the
presence of a prevalent sinusoidal oscillation along the AP
direction (shape of AP PSD). The parameters that primarily
correlate with PC5 are FDAP (r¼�0.61), f95AP (r¼�0.49) and
f50AP (r¼ 0.43). The relevance of FDAP is significant, and it
should be considered as the stabilometric parameter most
representative of this PC.
Table 4 AP–ML parameters: PC coefficients and correlation coefficients between parameters and corresponding PC. Only values of jrj40.4
are shown, in brackets, with exception of PC6 for which only minor correlation were found

PC1 PC2 PC3 PC4 PC5 PC6

Cumulative %
explained variance 35.67% 56.15% 70.21% 79.04% 85.86% 90.02%

MDAP �0.27 (�0.73) 0.03 �0.36 (�0.60) �0.19 �0.01 �0.12
MDML �0.26 (�0.69) �0.20 (�0.41) 0.26 (0.44) 0.01 �0.22 �0.24
RMSAP �0.28 (�0.74) 0.03 �0.35 (�0.59) �0.20 �0.01 �0.12
RMSML �0.26 (�0.71) �0.20 (0.41) 0.26 (0.44) 0.02 �0.22 �0.23
RANGEAP �0.29 (�0.77) �0.06 �0.31 (�0.53) �0.12 0.05 �0.03
RANGEML �0.25 (�0.67) �0.26 (�0.53) 0.21 0.09 �0.16 �0.16
MVAP �0.15 (�0.41) �0.34 (�0.70) �0.10 �0.11 0.05 0.42 (0.38)
MVML �0.06 �0.43 (�0.86) �0.09 0.15 �0.05 0.15
MFAP 0.18 (0.48) �0.23 0.32 (0.53) 0.20 0.07 0.34
MFML 0.24 (0.65) �0.19 (�0.46) �0.26 (�0.43) 0.17 0.09 0.22
TPAP �0.28 (�0.75) �0.11 �0.22 0.01 0.04 0.35 (0.32)
TPML �0.25 (�0.66) �0.27 (�0.55) 0.06 0.11 �0.05 0.14
f50AP 0.09 �0.21 (�0.43) 0.18 �0.47 (�0.63) 0.37 (0.43) �0.16
f50ML 0.25 (0.67) �0.28 (�0.56) �0.20 0.07 0.00 �0.19
f95AP 0.21 (0.56) �0.04 0.03 �0.45 (�0.60) �0.42 (�0.49) 0.19
f95ML 0.21 (0.55) �0.26 (�0.53) �0.20 0.04 �0.27 �0.23
CFAP 0.21 (0.57) �0.07 0.03 �0.50 (�0.67) �0.32 0.18
CFML 0.23 (0.63) �0.25 (�0.51) �0.19 0.10 �0.18 �0.30
FDAP 0.02 0.27 (0.55) �0.18 0.30 �0.52 (�0.61) 0.13
FDML �0.23 (�0.61) 0.19 0.21 �0.08 �0.24 0.20
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Fig. 2 COP trajectories and power spectral density (PSD) of two subjects for each PC explaining 90.02% of variation of AP and ML
stabilometric parameters. Two subjects are identified by highest (Max, upper panel) and lowest (Min, bottom panel) co-ordinate values
along corresponding PC. (a) PC1; (b) PC2; (c) PC3 (—)ML, (˙˙˙˙˙) AP; (d) PC4; (e) PC5; (f) PC6
PC6 highlights the spectral properties of the AP component of
COP, with little contribution from theML component. In fact, in
subjects oppositely situated along PC6, shown in Fig. 2f, we
notice a large difference in the AP PSD plot, with a larger
amount of power in the top panel compared with the bottom
panel. This interpretation is confirmed by the weight of para-
meters TPAP and MVAP in the definition of PC6, which are also
the most correlated (r¼ 0.38 and r¼ 0.32, respectively). The
higher correlation for the velocity parameter rather than for the
spectral one is not in contrast with the interpretation of PC6. In
fact, MVAP and TPAP are highly correlated with each other
(r¼ 0.71, p50.01) and the information held by these parameters
is very similar.

4 Discussion

4.1 Suggested sets of parameters

In this study, we developed a feature selection approach,
based on principal component analysis, to investigate the
redundancy of stabilometric parameters. An analysis
performed on the two sets of 2D and AP–ML COP-based
76 M
parameters allowed us to identify the two subsets that explain
the greatest part of the variability in a population of healthy
young subjects.

Based on the first PCs, the feature selection procedure applied
to the 2D parameters highlighted the following distinctive
properties of the COP trajectory:

(a) size of the path travelled by the COP over the support
surface, estimated by RMS, MD, RANGE, CEA and CCA

(b) relevant frequencies that characterise the power spectral
density curve: f50, f95 and CF

(c) principal sway direction, estimated by j90�MDirj,
reflecting the relative weight of the AP and ML compo-
nents of the oscillation

(d) a unitless measure of the frequency dispersion, estimated
by FD, a parameter related to the shape of the PSD curve
that quantifies the degree of determinism in the COP
displacements.

A valid choice among the parameters of group (a) could be
provided by the area of the bivariate confidence ellipse CEA,
which is the best estimate of COP sway area and may help
to produce a report that facilitates visual inspection of the
results. Nevertheless, owing to its common use, straightforward
edical & Biological Engineering & Computing 2004, Vol. 42



definition and robustness to violation of the stationarity assump-
tion, we would recommend choosing RMS from the parameters
of group (a). RMS has been related to the effectiveness of the
postural control system (PRIETO et al., 1996). Regarding
the parameters of group (b), variable independence (i.e. selected
parameters should be uncorrelated with one another) suggests
consideration of f95. In fact, it is the frequency-domain para-
meter that keeps all the off-diagonal elements of the parameter
correlation matrix below 0.5.

Thus the selection takes us to the set of 2D parameters that we
would propose for routine use in stabilometric practice, as listed
in Table 5.

It is worth noting that j90�MDirj provides information about
the AP and ML mutual relationship not achievable by any other
2D parameters. For this reason, it may be of particular interest in
clinical applications, even if its use is still limited to date.

Similar considerations can be formulated about feature selec-
tion for the AP–ML parameters. In this case, distinctive proper-
ties emerging from the first PCs included

(i) dispersion of the AP time series, estimated by RMSAP,
MDAP, and RANGEAP

(ii) mean velocity along the ML direction MVML

(iii) contrast between the dispersions of the AP and ML time
series. As the former are already accounted for by para-
meters in group (i), and to describe the different strategies
that can take place for postural stabilisation (with the
prevalence of AP or ML adjustments), the parameters to
consider here are RMSML, MDML and RANGEML

(iv) relevant frequencies of the AP power spectral density
curve, such as f50AP, f95AP and CFAP

(v) frequency dispersion of the AP power spectral density
curve FDAP

(vi) mean velocity along the AP direction MVAP.

The guidelines already taken into account for the 2D para-
meters suggest selecting the features listed in Table 5.

This set explains the effectiveness (RMSAP, RMSML) and the
amount (MVML, MVAP) of the regulatory activity taking place
along the AP and ML directions, with a significant dominance
of stability achieved in AP (RMSAP) and control of workload
achieved in ML (MVML). The relevance of MVML suggests a
strong influence of ML control activity on postural adjust-
ments (PRIETO et al., 1996; ROCCHI et al., 2002). Frequency-
domain parameters portray only the AP power spectral density
curve (f95AP, FDAP). Overall, this selection emphasises the
prevalence of AP components in characterising the postural
performance.

These results could be compared with those obtained by
PRIETO et al. (1996), who investigated the redundancy of
stabilometric parameters. They implicitly performed a feature
selection process, on a set of parameters almost coincident with
the one we used here, but the aim (the evaluation of the relative
sensitivity of COP-based parameters to postural changes related
to age) and the tools (Pearson correlation analysis and repeated

Table 5 Selected features, for 2D and
AP–ML parameters, proposed for routine use
in stabilometric practice

Selected features
2D parameter set AP–ML parameter set

RMS RMSAP
f95 MVML

j90-MDirj RMSML

FD f95AP
FDAP

MVAP
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measures ANOVA on 2D, AP and ML parameters altogether) of
their analysis were quite different from the present ones. In this
light, it is not surprising that the measures they recommend are
somewhat different.

4.2 Comparison between 2D and AP–ML datasets

The qualitative interpretation of PCs and the consequent
feature selection process for 2D and AP–ML parameters offer
parallel results, identifying the same COP properties, such as the
size=dispersion of the oscillation, spectral attributes (shape and
position of the power spectral density function) and the relative
weight of AP and ML components. This similarity supports the
validity of the PCs as interpreted so far, and it shows how
information embodied in the parameters extracted from the AP
andML time series is implicitly present, even if more concise, in
the parameters from the 2D time series. In fact,MVAP andMVML

do not find direct correspondence with any of the selected 2D
parameters.

There is no a unique method to decide whether to estimate 2D
or AP–ML parameters, but different considerations can influ-
ence this choice. It is noteworthy that the selected 2D features are
more immune to biomechanical factors than the AP–ML para-
meters. This was confirmed by both the simple robust regression
analysis proposed by CHIARI et al. (2002) and the multiple
regression analysis presented in the current study (Table 2).
These techniques demonstrated that the only parameter heavily
influenced by the biomechanics is f95, which is correlated with
height and two measures of base of support. When a normal-
isation procedure is not available, CF can be considered
alternatively, as it represents a good compromise between
dependence on the biomechanics and variable independence.

In contrast, AP–ML measures (if not normalised) are, in
general, more influenced by biomechanical factors, as already
reported in CHIARI et al. (2002) and confirmed by the results
presented in Table 2, where r2 is frequently higher than 0.2 for
such measures. The more frequent dependence is on base-of-
support measurements. For this reason, if no normalisation is
undertaken, it is crucial at least to constrain foot position, in an
attempt to limit inter-subject variability of base-of-support
measurements. This suggestion is corroborated by the need to
avoid cross-talk between AP and ML information, which can
occur if the anatomical frame of the subject is not precisely
aligned with the reference frame of the platform. On this matter,
the value of 2D parameters is that they are more robust to
imprecise orientation of the subject on the platform, the only
exception being j90�MDirj. Anyway, AP and ML measures
can be more indicative of the true directional component of the
sway. In fact, analysis of single COP components proved useful
in predicting the risk of falling (MAKI et al., 1994), sensitivity to
changes in postural performance due to ageing (MAKI et al.,
1990) and to Parkinson’s Disease (VIITASALO et al., 2002), and
in discriminating between predominant ankle or hip strategies
(WINTER et al., 1996).

4.3 Future developments

The target population of this study (healthy young subjects)
does not allow us to predict whether the selected measures will
be sensitive enough to changes related to age or pathologies
affecting the postural control system. For this reason, future
investigations will involve the analysis of composite populations
of healthy young and healthy elderly subjects or healthy and
pathological subjects. PCA points out the major factors behind
the variability of a dataset, and therefore we do not expect, a
priori, that the same set of parameters will be selected in every
case. Different parameters could be the most sensitive to the
specific conditions.
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Nevertheless, in the literature, it has already been observed
that some of the selected parameters may well discriminate
between pathological and control subjects. In a previous study,
RMS, j90�MDirj and f95 proved sensitive to Parkinson’s
Disease and to different treatments, including levodopa and
deep brain stimulation (ROCCHI et al., 2002). In another recent
study, the amount of COP sway (here quantified by RMS) was
found to detect postural abnormalities in diabetic subjects with
peripheral neuropathy (YAMAMOTO et al., 2001). Frequency
dispersion was found to be sensitive to ageing (MAKI et al.,
1990), together with mean velocity in the AP direction (MAKI

et al., 1990; PRIETO et al., 1996). This latter measure was also
found to correlate with clinical scores characterising stroke
patients (KARLSSON and FRYKBERG, 2000). Future results will
allow us to define a minimum set of parameters that would be
recommended for specific applications and to stimulate standar-
disation in the field.

The use of PCA for classification of movement patterns is well
established (YAMAMOTO et al., 1983; DELUZIO et al., 1997).
However, it is worth mentioning that, if the technique is
optimum for dimension reduction, it does not mean that it is
optimum for classification purposes (FUKUNAGA and KOONTZ,
1970). For this reason FUKUNAGA and KOONTZ (1970) proposed
a data normalisation technique to use before PCA that may
emphasise the differences between groups. The extension to
composite populations may also take advantage of different
techniques that have been proposed in the literature for dimen-
sion reduction, such as neural networks (CASTELLANO and
FANELLI, 2000; ACCIANI et al., 2003), second-order statistical
methods (FODOR, 2002), higher-order statistical methods
(independent component analysis, projection pursuit)
(HYVARINEN, 1999) and methods based on wavelet transforms
(COCCHI et al., 2003).

In particular, independent component analysis may be a
suitable technique for future developments of the present
study. In fact, it may be seen as an extension of PCA, looking
for statistical independence among components, instead of
uncorrelation as PCA does. In addition, independent component
analysis has already proved to be useful in the evaluation of
physiological signals, such as EEG and EMG data (VIGARIO

et al., 2000; MCKEOWN and RADTKE, 2001).
The results of the present study and the number of the selected

features could have interesting implications also for recently
proposed approaches to stabilometric analysis, attempting to
characterise the dynamic properties of the COP time series
(COLLINS and DE LUCA, 1993; NEWELL et al., 1997; CHIARI

et al., 2000a; b). These new approaches, based on a process
model, are, by their nature, more selective and lead to a smaller set
of parameters than simply treating the COP as a stationary signal
and computing all its summary statistical properties. The models
proposed so far have different dimensions in the parameter space,
ranging from two (NEWELL et al., 1997; CHIARI et al., 2000a) to
six (COLLINS and DE LUCA, 1993). Although these models may
provide information different from that provided by traditional
parameters, they could benefit from a deeper knowledge of the
latter. In fact, once the distinctive properties of the COP time
series are fully characterised, the choice between existing process
models (or the definition of new ones) will be much easier, and
their parameters will not be redundant and may be simpler to
interpret, as well, for a clinical user.
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